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Abstract—Release is a ubiquitous concept in software devel-
opment, referring to grouping multiple independent changes
into a deliverable piece of software. Mining releases can help
developers understand the software evolution at coarse grain,
identify which features were delivered or bugs were fixed, and
pinpoint who contributed on a given release. A typical initial step
of release mining consists of identifying which commits compose
a given release. We could find two main strategies used in the
literature to perform this task: time-based and range-based.
Some release mining works recognize that those strategies are
subject to misclassifications but do not quantify the impact of
such a threat. This paper analyzed 13,419 releases and 1,414,997
commits from 100 relevant open source projects hosted at GitHub
to assess both strategies in terms of precision and recall. We
observed that, in general, the range-based strategy has superior
results than the time-based strategy. Nevertheless, even when
the range-based strategy is in place, some releases still show
misclassifications. Thus, our paper also discusses some situations
in which each strategy degrades, potentially leading to bias on
the mining results if not adequately known and avoided.

I. INTRODUCTION

Release engineering is a discipline that integrates the source
code independently developed by the contributors into a co-
herent software product, which includes libraries and other
resources needed for the software deployment and execution
[1]. A release groups multiple independent changes into a
deliverable piece of software targeted at specific stakeholders.

Some of the key applications of release mining include
automatically composing release notes [2, 3, 4, 5] and com-
paring releases [6, 7, 8, 9]. Release notes summarize release
information and are important to enable end-users, product
owners, integrators, and developers to understand the changes
that occurred in the software since its previous releases. Such
changes may include, for example, new features, bug fixes,
architectural changes, and changes to licenses [4]. On the
other hand, releases comparison allows contrasting specific
characteristics of the release engineering process with the
observed outcome. For instance, Khomh et al. [8, 9] compare
releases to understand the impact of rapid release on software
quality, and Clark et al. [6] compare releases to understand the
implications of rapid releases on software security. Further-
more, developers fixing bugs may narrow the searchable code
base by identifying the commits of the release that inserted
the bug.
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A common initial step of the release mining approach
consists of identifying which commits belong to each release.
Although tags are frequently used to indicate the last commit
of a release, version control systems such as Git do not
provide built-in support to obtain the remaining commits of
a given release. Hence, stakeholders aiming at release mining
in Git must adopt a strategy to identify the commits that
belong to each release. The most common strategies to assign
commits to a release are time-based and range-based. The
time-based strategy assumes that any reachable commit in
a specific time interval belongs to a release. For instance,
the Git command git rev-list --since 2020-6-1
1.0.4, which implements the time-based strategy, lists all
commits of a given release that occurred in June, 2020. On
the other hand, the range-based strategy assigns the commits in
the change path between two tags to the release. For instance,
the Git command git rev-list 1.0.3..1.0.4, which
implements the range-based strategy, lists all commits of
release 1.0.4.

As recognized by existing release mining works [3, 4],
those strategies are subject to potential false positives and false
negatives. Depending on the software development history, ir-
relevant commits may be accounted into a release, and relevant
commits may not be accounted. This threat can potentially
affect the target release mining application. For instance, it
may lead to release notes with information not related to a
given release or not including important information. However,
to the best of our knowledge, we still have no quantitative
evidence in the literature on the impact of such a threat
according to the adopted strategy.

In this work, we assessed the precision and recall of time-
based and range-based strategies for commit assignment to
releases. In our context, precision is the fraction of relevant
commits among all commits assigned to a given release, and
recall is the fraction of relevant commits assigned to the
release among the total amount of relevant commits. Moreover,
we investigated whether the number of developers and base
releases influence the precision and recall results, depending
on the adopted strategy. We also investigated the effect of
including all the commits available in a specific time interval
to the time-based strategy analysis. To do so, we implemented
both strategies and executed them over 13,419 releases and
1,414,997 commits from 100 relevant open source software



projects. We contrasted the results with a baseline to compute
the precision and recall metrics. The baseline considers the
whole project history and the exact moment each release was
created to identify which release delivers each commit for the
first time.

Our study is organized into three research questions. In the
following, we list them and briefly discuss the main findings:

RQ1. How do time-based and range-based strategies com-
pare in terms of precision and recall? In this research
question, we investigate the effectiveness of the time-based and
range-based strategies. The answer to this research question
enables stakeholders to select the best strategy based on
their effectiveness. We found that the time-based and range-
based strategies have equivalent precision (u = 98.58% vs.
= 98.62%, respectively). However, the time-based strategy
has a statistically significantly lower recall (1 = 91.89%) than
the range-based strategy (1 = 100%), with a large effect size.

RQ2. How do the number of developers and the number of
base releases influence the precision and recall of the time-
based and range-based strategies? In this research question,
we investigate factors that may influence the effectiveness of
the time-based and range-based strategies. The answer to this
research question helps stakeholders choose the most effective
strategy depending on the project’s characteristics. We found
that increasing the number of developers has little influence on
the precision of both strategies (with a negligible effect size).
It increases the recall of the time-based strategy, comparing
releases with many developers (u = 96.82%) and releases
with few developers (u = 89.18%), with a large effect size,
but does not influence the recall of range-based strategy. Also,
we found that increasing the number of base releases does
not influence precision in either strategy. Moreover, it reduces
the recall of the time-based strategy, comparing releases with
multiple base releases (11 = 71.39%) and releases with a single
base release (1 = 95.13%), with a large effect size, but does
not influence the recall of the range-based strategy.

RQ3. How does the inclusion of all the commits available
in a specific time interval influence the precision and recall
of the time-based strategy? The time-based strategy may be
inadvertently parameterized to consider all commits in the time
interval, disregarding being reachable by the release under
analysis. The answer to this research question helps stakehold-
ers know the impact of running the time-based strategy with
this alternate parameterization. We found that this approach
jeopardizes both precision (1 = 98.58 vs. u = 64.37, with a
large effect size) and recall (with a negligible effect size) of
the time-based strategy.

This paper is organized into six other sections besides
this introduction. In Section II, we explain some key version
control concepts. In Section IIl, we detail the materials and
methods of our research. In Section IV, we answer each
research question and discuss the findings of our paper. In
Section V, we discuss the threats of the validity of our results.
In Section VI, we present the related work. Finally, in Section

VII, we conclude our work and highlight some future work.

II. BACKGROUND

This section presents some basic knowledge about version
control system concepts. More specifically, we focus on Git’s
concepts, as it is the version control system used by all projects
in our corpus.

A. Commits, Tags, and Releases

Git is a distributed version control system that represents the
changes to the software as commits. A commit is an object
uniquely identified by a SHA1 hash that references the state
of the code in a given moment. When a developer checks out
a commit, Git retrieves the versions of the software artifacts
stored in the repository when the commit was made. Each
commit also stores metadata, including the message explaining
the change, the author, the committer (the developer who
applied the change to the repository), and the timestamp. A
commit ¢ also references its parents, i.e., the commits that
commit ¢ was based on. Generally, a commit has only one
parent. A commit with more than one parent is a merge
commit.

Like most version control systems, Git provides tags, which
consists of a mechanism to reference a single object stored
in the repository (generally a commit). The tags allow the
developers to name, describe, and timestamp the releases.
Hence, it is possible to label a commit as a release using tags,
e.g., labeling a commit with hash ”1d35...” as release ”1.0.1”.

Finally, release names may have semantics, such as those
that use Semantic Versioning [10]. The Semantic Versioning
labels the release with three numbers separated by dots (e.g.,
1.2.3), respectively, the major, minor, and patch versions. The
major version represents releases that are backward incompat-
ible with previous ones; the minor version represents releases
that introduce backward compatible new features; and the
patch version represents releases that only fix bugs without
introducing new features. For instance, according to semantic
versioning, the difference between release “1.0.0” and “1.0.1”
is just bugfixes.

B. Software and Release Development History

Although a commit is atomic and collects all the software
artifacts versions available at the time it was made, sequencing
commits enables stakeholders to retrieve the software’s incre-
mental evolution. Therefore, the commits and their parents
describe the software development history and may be rep-
resented as a directed acyclic graph, in which the nodes are
the commits and the edges are the parent relationships. Fig.
1 present two examples of a commit graph, which show all
changes sequenced in the inverse order they were introduced
in the repository.

In essence, the commits of a given release are those in-
troduced in the release development. The developers start the
development from a commit that belongs to a previous release,
i.e., its base release. Gradually, they include new commits
to the release as the development progresses. Eventually,



developers may integrate the code of other releases into the
release under development, adding these as base releases of
the current release.

C. Branch, Merge, and Rebases

On Git, when developers need to work in parallel, they
may use branches to isolate their changes. Eventually, they
may need to integrate the parallel work. Such an integration,
also known as merge, produces a commit with more than one
parent, each one being the last of commit of each branch. Git
also offers the rebase command. Roughly speaking, it removes
the commits from a given branch and reapplies them at the end
of another branch, changing the project development history.

III. MATERIALS AND METHODS

In this section, we explain in more detail the research
questions that guided this study and the approach we used to
answers them. Additionally, we present the strategies to assign
commits to releases, the corpus we used to evaluate our work,
the process to mine releases, the baseline used to compare the
strategies, and the dependent variables.

We provide a replication package of our study online'. The
replication package includes the repositories and the scripts we
used to run our experiment. We implemented the strategies to
assign commits to releases in a release mining tool named
Releasy?.

A. Research Questions

1) How do time-based and range-based strategies compare
in terms of precision and recall? (RQI): In this research
question, we assess time-based and range-based strategies to
identify which selects commits with higher precision and
recall. The answer for this question could help researchers,
developers, and product owners choose the best strategy to
support their release mining process. Once defined the strategy,
this answer may provide information about the errs that the
commit assignment to releases may introduce to their target
application. For instance, developers using a low recall strategy
to generate release notes must be aware that the resulting
release notes may be incomplete. We mined the releases using
both strategies and tested the following null hypothesis:

HY: There is no significant difference between the mean of
precision and recall on commit assignment to release using
time-based and range-based strategies.

We adopted o = 0.05 for all tests. First, we run the
Shapiro test to check whether the data follows a normal
distribution. Since our data do not fit a normal distribution
(p-value < 0.0001), we run the non-parametric Wilcoxon
paired test to check whether there is a significant difference
between the mean of the distributions of precision and recall of
each strategy. We used the paired test because our distributions
originate from the same projects, distinguishing themselves
only by the strategy used to assign commits to releases.

Thttps://github.com/gems-uff/release-mining
Zhttps://github.com/gems-uff/releasy

Finally, we used the Cliff’s Delta test to calculate the effect
size of the difference, i.e., the magnitude of the difference.

2) How do the number of developers and the number of
base releases influence the precision and recall of the time-
based and range-based strategies? (RQ2): In this research
question, we want to discover factors that may influence
the precision and recall of the time-based and range-based
strategies. This question’s answer may reveal that one strategy
is better than the other in specific scenarios, such as those
involving higher parallelism.

We choose to investigate metrics related to parallel work.
We used two factors: the number of developers and the number
of base releases. A higher number of developers involved in
a release, very likely, may represent that more parallel work
has happened during the development of the release. Also,
a higher number of base releases, very likely, may represent
the development of multiple releases in parallel. We do not
expect to define guidelines to compose the project team or
the development process, but we intend to provide awareness
about each strategy’s limitations regarding these factors.

We calculated the Spearman correlation of the number of
developers with the number of commits in a release and could
observe that it is high (p = 0.7410), according to Hinkle et al.
[11]. Hence, we normalized the number of developers per the
number of commits in the release to reduce the effect of the
release size in the analysis. Since the releases have much more
commits than developers, we opted to multiply the metric by
100, avoiding small decimal numbers. We also calculated the
Spearman correlation of the number of base releases with the
number of commits in a release and could observe that it is low
(p = 0.3396), according to Hinkle et al. [11]. Hence, we did
not normalize the number of based releases. Thus, we adopted
the following metrics, extracted per release under analysis:

o Number of developers per 100 commits: the number of
unique developers that made at least one commit to the
release, divided by the total commits of the release, times
100.

o Number of base releases: the number of base releases of
the release.

We calculate both metrics for all releases. Then we calcu-
lated the mean of the number of developers per 100 commits
(u = 25.27) and the number of base releases (u = 1.33)
considering all releases. Next, we used the mean of the number
of developers per 100 commits to divide the releases into
two groups (two treatments): the group with fewer developers
(fewer than the mean) and the group with many developers
(bigger than or equal to the mean). Likewise, we used the
mean of the number of base releases to divide the releases
into two groups (two treatments): the group with single base
releases (only one) and the group with multiple base releases
(more than one).

We mined the releases of each group using both strategies.
Then, we assess the strategies comparing the groups fewer vs.
many developers, and single vs. multiple base releases. We
tested the following null hypothesis:



H22: There is no significant difference between the mean of
precision and recall on commit assignment to releases with
few and many developers.

H2P: There is no significant difference between the mean of
precision and recall on commit assignment to releases with
single and multiple base releases.

We followed the same statistical approach of RQI, but
instead of comparing the strategies, we compared the groups,
testing the treatments of each factor independently for each
strategy. The Shapiro test shows that all the distributions do
not fit a normal distribution (p-value < 0.0001). We did not
test the recall of the range-based strategy because it achieved
100% recall for all treatments.

3) How does the inclusion of all the commits available in a
specific time interval influence the precision and recall of the
time-based strategy? (RQ3): In Section III-B1, we explained
the time-based strategy. We introduced that a developer may
run the strategy considering all the commits available in a
specific time interval, independently of the commit being
reachable by the release. In this question, we want to assess
the impact of this variant on the precision and recall of the
time-based strategy.

We mined the releases using the time-based strategy consid-
ering the reachable commits and considering all the commits.
We tested the following null hypothesis:

H3: There is no significant difference between the mean of
precision and recall on commit assignment to release using
time-based strategy considering only reachable commits or all
commits available in a specific time interval.

We followed the same statistical approach of RQ1. The
Shapiro test shows that all the distributions do not fit a normal
distribution (p-value < 0.0001).

B. Release Mining Strategies

We found works in the literature that assign commits to
releases considering the commit timestamps [3, 9, 7, 4, 12],
called time-based strategies, and considering the range of
commits [13, 14, 15], called range-based strategies.

The strategies prune the project’s commit graph to retrieve
the sub-graph of commits that belong to a given release. Both
strategies use the release’s tag to assign the first commit
that composes the sub-graph and a reference to recognize
which commits must belong to the sub-graph. The reference
accomplishes the stop condition of their algorithms and is
generally related to a base release. The time-based strategy
uses the base release’s timestamp as a reference, and the range-
based strategy uses the base release tag as reference. Since a
release may have more than one base release, the commits
assigned may vary according to the choice. Also, choosing a
wrong base release may lead to incorrect results.

We explain the time-based and range-based strategies in the
following sections.

1) Time-based Strategy: The time-based strategy assigns
the commits to releases based on the commits’ timestamp,
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Figure 1: Part of the commit graph of D3.js (a) and Node.js
(b) projects, excluding some consecutive commits. The circles
represent commits, positioned from left to right according to
their commit timestamp, i.e., the commit from the left is older
than the commit from the right. The arrows point from a
commit to its parents.

i.e., when the commits were inserted into the version control
system. It starts assigning the commit referenced by the tag of
the current release. Then, it walks through the repository his-
tory, assigning all reachable commits made after the reference
timestamp. The Git command git rev-list --since
2020-6-1 1.0.4 implements this strategy. It retrieves all
commits reachable by release 1.0.4 made after June 1%, 2020.

For instance, Moreno et al. [4] use this approach to gen-
erate release notes. The authors state that the dates between
the release and its base release are approximations because
developers may be working on other releases or even start
developing the next release before finishing the current release.

In Fig. la, when analyzing the release “v1.8.5” and using
the timestamp of the release “v1.8.4” as reference, the time-
based strategy would assign the commits {b,c,d} to the
release “v1.8.5”. The strategy would not assign the com-
mits {f, g, h,i} because they were made before the release
“v1.8.4” timestamp. Moreover, the strategy would not assign
the commits {a, e} because they are not reachable by the tag
“v1.8.5”. In Fig. 1b, when analyzing the release “v0.12.7” and
using the timestamp of the release “v0.12.6” as reference, the
time-based strategy would assign the commits {a, b, c,d, e, f}
to the release “v0.12.7”. The strategy would not assign the
commits {g, h, %, j } because they were made before the release
“v0.12.6” timestamp.



A developer may inadvertently run the time-based strategy
considering all the commits (including those unreachable).
The inclusion of all commits would assign commits from
branches unrelated to the current release development. In
Fig. la, considering all the commits, the time-based strat-
egy would inappropriately include the commit {e} to re-
lease “v1.8.5”. The strategy would not include the com-
mit {a} because it was made after the release “v1.8.5”.
The Git command git rev-list --since 2020-6-1
2020-6-30 --all implements this variant of the time-
based strategy by assigning all the commits made in June,
2020 to the release.

Finally, in Git, the commit timestamp is obtained from
the committers’ computer, and there is no validation on the
repository regarding the correctness of this information. Also,
developers can create a tag with a timestamp different than the
commit’s timestamp. Hence, commits and tags accidentally
reported with the wrong timestamp may influence the time-
based strategy results.

2) Range-based strategy: The range-based strategy assigns
the commits to releases based on the repository history instead
of the time. The strategy selects the commits reachable by a
given release that are not reachable by its base release. This
strategy identifies all reachable commits of both the release
under analysis and its base release by walking through the
transitive closure of the tagged commits. Then, the strategy
subtracts the set of the base release’s commits from the set of
commits of the release under analysis. The remaining commits
are the ones that the strategy assigns to the release under
analysis. For instance, the Git command git rev-list
1.0.3..1.0.4 implements this strategy. It retrieves all
commits that are reachable by release ”1.0.4” but are not
reachable by release 71.0.3”.

For instance, GitHub [15] uses this approach to compare
releases. Also, Chacon and Straub [14] explains the use of
double dot notation to determine the commits reachable by
one release that are not reachable by another.

In Fig. la, when analyzing the release “v1.8.5” and using
the release “v1.8.4” as reference, the range-based strategy
would assign the commits {b,c,d, h} to the release “v1.8.5”.
The strategy would not assign the commits {f,g,i} because
they are reachable by the release “v1.8.4”. Moreover, the
strategy would not assign the commits {a,e} because they
are unreachable by the release under analysis. In Fig. 1b,
when analyzing the release “v0.12.7” and using the release
“v0.12.6” as reference, the range-based strategy would assign
the commits {a,b,c,d, e, f,h} to the release “v0.12.7”. The
strategy would not assign the commits {g,,;} because they
are reachable by the release “v(.12.6”.

C. Project Corpus

When selecting the corpus for our study, we aimed at mature
and relevant open source projects. We chose to search for
projects hosted on GitHub because it hosts millions of projects
and provides ease of search through APIs. In GitHub, users
can assign stars to track projects they like or find interesting.

Hence, we consider the number of stars of a project as a good
approximation of GitHub’s project relevance (more is better)
[16]. Thus, we sorted the search results descending by the
number of stars of the projects and selected those with the
higher number of stars.

We selected projects from multiple programming languages,
considering the top 10 popular programming languages from
the 2019 Stack Overflow Survey®. In 2019, nearly 90,000
developers answered this survey, which revealed the most
popular technologies. The survey ranks programming, script,
and markup languages. We choose to discard HTML and
CSS because they are not programming languages. We also
discarded SQL, Shell, and PowerShell because they are lan-
guages targeted at specific purposes, such as interacting with
a database and running operating system commands. Our
selection consists of the following programming languages:
JavaScript, Python, Java, C#, PHP, C++, TypeScript, C, Ruby,
and Go.

On September 17", 2020, we searched GitHub to populate
our corpus. We run a GraphQL query for each programming
language to retrieve the 35 projects with the most stars. Then,
we applied seven filters to avoid perils [17, 18] and produce
a balanced corpus, preventing including projects too small
that would be irrelevant to the analysis or too big that would
dominate the analysis. We describe the filters in the following:

1) Inactive projects: we removed projects without commits
made in the last 180 days to avoid working with aban-
doned projects;

2) Small projects: we removed projects with less than 2,000
commits to avoid immature or toy projects;

3) Non-software projects: we removed non-software
projects, such as documentation projects;

4) Big projects: we removed projects that alone represent
more than 5% of our corpus’s total number of commits to
preventing the characteristics of such projects from taking
precedence over the characteristics of other projects;

5) “Monorepo” projects: we removed projects that host
releases of different products on the same Git repository;

6) Few releases: we removed projects with fewer than ten
final releases to avoid working with projects that are still
in their initial releasing phase;

7) Non-semantic versioning projects: we removed projects
that use non-semantic versioning releases, such as
projects that use dates to label their releases.

We iterative applied the filters. First, we selected 100
projects, the 10 with the most stars for each programming
language, and applied the filters to them. After executing a
given filter, we added the next projects from our query results
to top up ten projects per language again. Then, we reapplied
the same filter. We repeated this process until the filter stop
removing projects. Then, we applied the next filter using the
same process (filtering and topping up). After applying all the
filters, we repeated the process from the beginning until all
filters stop removing projects, which happened after the third

3https://insights.stackoverflow.com/survey/2019/#technology



Table I: The project filtering results per round

Filter Round 1 Round 2 Round 3  Total
Inactive 2 8 2 12
Small 34 24 4 62
Non-software 9 3 - 12
Big 7 3 - 10
“Monorepo” 33 6 - 39
Few releases 4 2 - 6
Non-semantic versioning: 1 0 - 1

Table II: The project characteristics per programming language
(n = 10 per programming language)

Language _# Stars # Commits # Releases
Min. Max. Min. Max. Min. Max.
C 12,189 48,821 2,055 48,773 24 530
C# 7,388 18,451 2,201 18,402 20 195
C++ 21,113 86,283 3,998 30,739 18 506
Go 23,744 47,145 3,659 27,005 30 338
Java 22,463 51,561 2,066 55,176 27 249
JavaScript 54,145 173,633 3,127 35292 49 593
PHP 14,385 61,920 2,391 42,497 12 584
Python 30,376 52,756 2,215 50,771 32 393
Ruby 11,024 31,669 2,280 39,546 68 184
TypeScript 27,952 64,910 2,030 31,206 49 352

round. Table I shows the order we applied the filters and the
removals per round. In total, the filters removed 142 projects.

Our final corpus comprises 13,419 releases, excluding pre-
releases, such as betas and release candidates, and 1,414,997
commits from 100 relevant open source projects developed
using ten different programming languages. Table II show the
corpus’ characteristics per programming language, including
the number of stars, commits, and releases.

D. Data processing

We cloned all the Git repositories of our corpus on Octo-
ber 111, 2020, and implemented the whole mining process,
including the range-based and time-based strategies.

First, we identified the releases on the Git reposi-
tory applying a regular expression that finds the ver-
sion number in the tags’ name. The regular expres-
sion comprises three parts and separates the tag name
into prefix (?<prefix>(?:["\s]=*?), version number
(?<version>(?:[0-9]+[\._])*[0-9]+), and suffix
(?<suffix>["\s]*).We included the positive look ahead
(?=(?:[0-97+[\._1)) to handle releases with number
in the prefix and the alternative | (?:["\s]*?) to handle
releases with a single version number (e.g., “r1”). For instance,
for the release tag “v1.0.0beta” our regular expression would
assign “v” as prefix, “1.0.0” as version number, and “beta” as
suffix.

Next, we identified the tags that correspond to pre-
releases, e.g., “v1.0.0beta”. For most projects, we con-
sidered pre-releases the tags with a suffix. The excep-
tion were the projects “spring-projects/spring-boot”, “spring-
projects/spring-framework”, “netty/netty”, and “godotengine/-
godot”, which use suffix for all releases. For these projects,
we manually analyzed the suffix to identify the pre-releases.

We discarded all pre-release tags because the commits of the
pre-releases also belong to the final release, e.g., the commits
of the release “v1.0.0beta” belong to the final release “v1.0.0”.

In addition, we analyzed the remained tags to check whether
they contain any conflicts, i.e., different tags representing the
same semantic versioning number or referencing the same
commit. We found 98 release conflicts. We discarded one
of the two tags to resolve the issue. We found 55 pairs
of tags with the same semantic versioning number: some
tags representing the same version but with a missing bugfix
number (e.g., v1.0 and v1.0.0) and other tags with different
prefixes (e.g., v1.0.0 and 1.0.0). Surprisingly, despite the same
semantic, these tags do not always reference the same commit.
We applied the following heuristics to address this conflict:
first, we removed the tags using the least common prefix
adopted by the project; then, we removed the tags not using
semantic versioning pattern. We also found 43 tags with
different version referencing to the same commit. We removed
the tag with the higher semantic versioning number to address
this issue.

Finally, we mined the repositories with the time-based and
range-based strategies. For both strategies, we choose the base
release as the previous semantic version available when the
release in analysis was created. In Fig. 1a we would use the
release “v1.8.4” as the base release of the release “v1.8.5”,
and in Fig. 1b we would use the release “v0.12.6” as the base
release of the release “0.12.7”.

E. Baseline

We need to establish the baseline containing the set of
commits that actually belongs to the release, to check whether
the commits assigned by a strategy are correct or not. Since
there is no predefined list of the commits belonging to each
release in our corpus, we devised an algorithm to define the
baseline.

Our algorithm processes the whole Git repository and find
the release that first delivered a given commit. The algorithm
first orders all the releases available in the repository by time.
Then, for each release in ascending time order, the algorithm
assigns all the commits that are reachable by the release but
were not previously assigned to other releases. In Fig. la,
we would assign to release “v1.8.5” the commits {b, c,d, h}.
We would not assign the commits {f,g} and {i} because
they would have been previously assigned to releases “v1.8.4”
and “v1.8.3”, respectively. Moreover, we would not assign
the commits {a,e} because they are not reachable by the
release “v1.8.5”. In Fig. 1b, we would assign the commits
{a,b, ¢, f, h}. We would not include the commits {g, %, j} and
{d, e} because they would have been previously assigned to
releases “v0.12.6” and “v0.10.40”, respectively.

Unfortunately, no Git command implements this algorithm,
and the algorithm demands analyzing the whole repository
history, which is impractical to be conducted manually. This
possibly explains why the existing work in the literature opted
to use time-based or range-based strategies instead of this
algorithm for assigning commits to releases.



F. Dependent variables: precision and recall

We assessed the effectiveness of the strategies using pre-
cision and recall (dependent variables). The precision and
recall of commits assigned to a release were calculated with
their traditional formula: precision = TP/(TP + FP) and
recall = TP/(TP + FN). We compare the set of commits
C? assigned by a given strategy s to the release r; with the set
of commits C; of the baseline for the same release r;. Then,
we identify the false positives FP = C? \ C;, false negatives
FN = C; \ Cf, and true positives TP = C7 N C;. When
a strategy completely errs the analysis, generating zero true
positives and false positives, and thus a potential division by
zero, we set the precision to zero. We also calculated the F-
measure for the releases, which is the harmonic mean of the
precision and recall.

Even after applying the filter to remove big projects, the cor-
pus still contains some projects with few releases (min = 12)
and others with many releases (max = 593). The difference in
the number of releases may happen because the development
process adopted by the project may influence the number
of releases [19]. For instance, the project “d3/d3” comprises
4,282 commits and 265 releases. In comparison, the project
“tesseract-oct/tesseract” comprises 4,600 commits but only
18 releases. Thus, we calculated the dependent variables per
release and used the macro averaged mean [20] to aggregate
the metrics per project, i.e., the project’s precision is the mean
of the precision of its releases, and the project’s recall is the
mean of the recall of its releases. Finally, we calculated the
overall precision as the macro averaged mean of all projects’
precision and the overall recall as the macro averaged mean
of all projects’ recall.

IV. RESULTS AND DISCUSSION

In this section, we answer the research questions, present
the results, and discuss our findings.

A. How do time-based and range-based strategies compare in
terms of precision and recall? (RQI)

The Wilcoxon test returned p-value = 0.0851 for precision
and p-value < 0.0001 for recall. Thus, we could not reject
H{ for precision but could reject for recall. The Cliff’s Delta
test returned d = 1.0000, which represents a large effect
size. Thus, we could conclude that the strategies have similar
precision but significantly different recall. Table IIT shows the
macro averaged mean precision, recall, and F-measure for
each strategy. The range-based strategy has higher precision
and recall than the time-based strategy, suggesting that the
range-based strategy is the most appropriate strategy to assign
commits to releases.

Fig. 2 shows the distributions of precision and recall of the
projects. We could observe more projects with higher precision
with the time-based strategy (median = 100.00%) than with
the range-based strategy (median = 99.88%). However, the
test revealed that the difference is not statistically significant.
We could also observe that all the projects achieved 100.00%

Table III: The overall precision, recall, and F-measure of the
corpus according to each strategy.

Strategy Precision Recall ~ F-measure
Time-based 98.58% 91.89% 92.94%
Range-based 98.62%  100.00% 98.93%
time-based q - v - - - 4|:|
range-based . . . o= ° oo ﬂ
0.85 0.90 0.95 1.00
()
time-based q o .. . * eseee
range-based |
0.7 0.8 0.9 1.0
(b)

Figure 2: The comparison of the macro averaged mean of
precision (a) and recall (b) for the time-based and range-based
strategies.

recall using the range-based strategy, which means that the
strategy did not miss any commit in our experiment.

RQ1. How do time-based and range-based strategies
compare in terms of precision and recall?

Answer: The time-based and range-based strategies have
equivalent precision (x = 98.58% vs. u = 98.62%,
respectively), but the time-based strategy has lower recall
(1 = 91.89%) than the range-based strategy (u = 100%).
Implications: In general, stakeholders in charge of min-
ing release should consider the use of range-based strategy
instead of time-based. The range-based strategy include
a similar small amount of false positives when compared
to the time-based strategy, but without false negatives.
In practice, in a release notes generation, for instance,
all features and bug fixes actually implemented by the
release would be listed, but unfortunately, some few
features or bug fix that belong to other releases would
be inappropriately listed too.

B. How do the number of developers and the number of base
releases influence the precision and recall of the time-based
and range-based strategies? (RQ2)

In the analysis of the factor number of developers and the
treatments few developers and many developers, the Wilcoxon
test returned p-value < 0.0001 for the precision and recall
of the time-based strategy, and p-value = 0.0023 for the
precision of the range-based strategy. We did not test recall for
the range-based strategy because both have p = 100%. Thus,



Table IV: The overall precision, recall, and F-measure of the
factors number of developers and base releases.

Factor Strategy Treatment Precision Recall F-measure
Time-based TV 99.01% 89.19%  90.96%

Develovers many 97.59% 96.82%  96.31%
P Ranse-based [V 98.92% 100.00%  99.20%
£e0a5C¢ hany 97.82% 100.00%  98.19%

Timebased  Single 98.64% 95.13%  95.41%

Base releases multiple  96.92%  71.39%  76.12%
! " Raneebased  Single 98.83% 100.00%  99.02%
& multiple ~ 97.45% 100.00%  98.32%
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Figure 3: The comparison of the macro averaged mean of
precision (a) and recall (b) for the time-based and range-based
strategies considering the factor number of developers.

we could reject H3® for the precision and recall of the time-
based strategy, and for the precision of range-based strategy.
The Cliff’s Delta test returned d = 0.0649 (negligible effect
size) for the precision of the time-based strategy, d = 0.6979
(large effect size) for the recall of the time-based strategy, and
d = 0.0333 (negligible effect size) for the precision of range-
based strategy. We could conclude that the factor number of
developers has negligible influence in the precision of both
strategies but a large influence in the recall of time-based
strategy. Table IV show the precision, recall, and F-measure
of each strategy considering each treatment. We could observe
that the F-measure of the time-based strategy is higher with the
treatment of many developers. Fig 3 shows the distributions of
precision and recall of the projects according to the number of
developers working in the releases. Although it is negligible,
we could observe that the precision of both strategies is a little
lower with the treatment many developers. Moreover, we could
observe that the recall of the time-based strategy is higher with
the treatment many developers.

In the analysis of the factor number of base releases and
the treatments single base release and multiple base releases,

single emeo

multiple 4

Figure 4: The comparison of the macro averaged mean of
recall for time-based strategy considering the factor number
of base releases.

the Wilcoxon test returned p-value = 0.6529 for precision of
the time-based strategy, p-value < 0.0001 for the recall of the
time-based strategy, and p-value = 0.0898 for the precision
of the range-based strategy. Again, we did not test the recall
of the range-based strategy because both have p = 100%. We
could reject HZ® just for the recall of the time-based strategy.
The Cliff’s delta test returned d = 0.7667 (large effect size)
for the recall of the time-based strategy. We could conclude
that the factor number of base releases has no influence on
the precision of both strategies but has a large influence in the
recall of the time-based strategy. Also, the factor number of
base releases does not influence the range-based strategy. In
Table IV, we could observe that the F-measure of the time-
based strategy is lower with the treatment of multiple base
releases than with the treatment single base releases. Fig. 4
shows the distribution of recall of the projects according to
the number of base releases. We could observe that the recall
of the time-based strategy with the treatment multiple base
releases is lower than the recall of the time-based strategy
with the treatment single base release.

RQ2. How do the number of developers and the number
of base releases influence the precision and recall of the
time-based and range-based strategies?

Answer: We found that releases with many developers
have little influence on the precision of both strategies
(with negligible effect size) but raises the recall of the
time-based strategy (u = 96.82%) when compared to
releases with few developers (1 = 89.19%), with large
effect size. On the other hand, for the time-based strategy,
releases with multiple base releases have a lower recall
(n = 71.39%) than releases with a single base release
(1 = 95.13%), with large effect size.

Implications: Stakeholders in charge of mining releases
using the time-based strategy may achieve higher recall
when analyzing releases with many developers. However,
they should avoid using the time-based strategy on re-
leases with multiple base releases.

C. How does the inclusion of all the commits available in a
specific time interval influence the precision and recall of the
time-based strategy? (RQ3)

The Wilcoxon test returned p-value < 0.0001 for precision.
Although only 13% of the projects presented differences in



Table V: The overall precision, recall, and F-measure of
the corpus according to time-based strategy, including just
reachable commits and including all commits available in a
specific time interval.

Strategy Precision Recall ~ F-measure
Time-based (reachable commits) 98.58%  91.89% 92.94%
Time-based (all commits) 64.37%  91.84% 66.71%

the recall, the Wilcoxon test returned p-value = 0.0017
for recall. Thus, we could reject Hi. The Cliff’s Delta test
return d = 0.9512 (large effect size) for precision and d =
0.0085 (negligible effect size) for recall. Table V shows the
macro averaged mean of precision, recall, and F-measure for
the strategy. The time-based strategy, including all commits,
has lower F-measure than the time-based strategy, including
only reachable commits, suggesting that the inclusion of all
available commits in a specific time interval jeopardizes the
precision of the time-based strategy.

Fig. 5a shows the distribution of the projects’ precision
using the time-based strategy, including just the reachable
commits and including all commits available in a specific time
interval. We could observe that the precision is lower for the
majority of projects using the time-based strategy, including
all commits. The reduction in precision happens because the
variant strategy considers commits unrelated to the release
under analysis, such as the commit {e} shown in Fig. la.

Fig. 5b shows the distribution of the recall of the projects,
and we could observe that the distributions are similar. We
were intrigued by the fact that some releases have different
recall using time-based strategy, including just the reachable
commits and including all commits available in a specific time
interval. Therefore, we sampled some of these releases and
we could observe issues with the timestamp of the releases,
entailing in the incorrect removal of commits. For instance,
the timestamp of release “v0.35.6” of the project “electron/-
electron” was made on 12/25/2015, but the referenced commit
was made on 01/11/2016, surprisingly after the release. This
issue does not happen in the time-based strategy that just
consider reachable commits because the algorithm starts at
specific commit instead of a timestamp of a tag.

RQ3. How does the inclusion of all the commits available
in a specific time interval influence the precision and
recall of the time-based strategy?

Answer: We could observe that the inclusion of all
available commits in time interval introduce error on
the analysis and reduce the precision (1 = 98.58 vs.
© = 64.37, with a large effect size) and recall (with a
negligible effect size) of the time-based strategy.
Implications: Stakeholders using the time-based strategy
should be careful not to include unreachable commits in
the analysis.
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Figure 5: The comparison of the macro averaged mean of pre-
cision (a) and recall (b) for the time-based strategy, including
just reachable commits and including all commits available in
a specific time interval.

V. THREATS TO VALIDITY

Although we have taken care to avoid bias, some situations
may have affected the results. In this section, we discuss these
situations, observing the guidelines from Wohlin et al. [21].

Internal validity. We have no control over the development
of the projects in our corpus. The projects may introduce
techniques that change the commit graph and impair our
results. For instance, developers may have applied the rebase
operation, which creates a more linear commit graph. More-
over, they may have committed unreachable code, such as code
enclosed by a feature toggle intended to be delivered in a
future release.

Construct validity. We used the previous semantic version
number available when the release was created as its base
release for both the time-based and range-based strategies. We
choose this reference because it is reasonable and straight-
forward for a developer to adopt. However, other references
could have been used, such as the previous release in time or
the result of the command git describe. The use of other
references may change the results of precision and recall for
both the strategies.

Finally, we found 98 semantic conflicts in our corpus, i.e.,
two tags representing the same semantic versioning number
(e.g., “v1.0.0” and “1.0”) or referencing the same commit. We
discard one tag for each conflict, which can introduce errors in
the analysis. However, the event is rare, representing just about
0.70% of our corpus’ releases, thus not imposing a relevant
impact to our analysis.

Conclusion Validity. Although we individually calculated
precision and recall for the releases, we run the hypotheses
test using per project precision and recall. We used the macro
averaged mean to aggregate the metrics per project, which
give equal weight to all project’s release [20]. Hence, releases
with few commits will have the same weight in the analysis
as releases with many commits.



External validity. We used relevant open source projects
to compose our corpus. These projects may have unique
characteristics not present in an industry project, such as
a team composed of hundreds of voluntary collaborators.
Furthermore, we applied filters to select the projects, limiting
the programming language, size, and release pattern. Hence,
the result found in this work cannot be generalized for projects
with characteristics different from our corpus.

VI. RELATED WORK

In this section, we present studies that are related to our
work. The studies are grouped according to their assignment
strategy, that is, (i) commit assignment to issues, (ii) issue
assignment to releases, (iii) commit assignment to dependent
commits, (iv) commit assignment to releases. Considering,
specifically, the objective of our study, we did not find research
efforts focused on the impact of assign commits to releases,
and, to the best of our knowledge, our work is the first attempt
investigating this subject.

Commit assignment to issues. The following studies aim at
bridging the version control system and issue tracking system.
Le et al. [22] evaluates RCLinker, a tool that links com-
mits to release using contextual information and summarizing
techniques. They evaluated six projects and achieved overall
50,91% of precision and 89,27% recall. Furthermore, the
authors compared their tool with MLink [23], which achieved
overall 56.40% precision and 17.96% of recall.

Sun et al. [24] evaluates FRLink, an approach that focuses
on recovering the missing issue-fix relationships. They com-
pared their technique with the RCLinker and reported that
FRLink could outperform RCLinker in F-measure by 40.75%.
They also discuss that, in their context, recall is more relevant
than precision.

Issue assignment to releases. Moreno et al. [3, 4] mine
Git using the time-based strategy to generate release notes.
They select the commits that belong to a release to link them
with the issue tracker system. Then, they generate release
notes. They evaluate the importance and completeness of
their approach regarding identify the features that belong to
the release notes but do not evaluate the error introduced
by incorrectly choosing the commits that belong to a given
release. Abebe et al. [2] studied nine factors that influence the
likelihood of an issue being listed in a release note. They first
identify the issues present in the release notes, then they search
the commits with a message with an issues’ identification.
They reported they could link 89% of the issues to commits.

Commit assignment to related commits. Dhaliwal et al.
[25] propose two different approaches to identify dependencies
among commits, aiming at creating groups of dependent
commits. In the context of software product lines, features
are added to the common components of a software product
family and, after, integrated into products following a selective
code integration product. By identifying groups of dependent
commits, the authors help developers link the commits to the
features to enable the selective integration of the features. The
approaches achieve precision up to 95% and recall up to 82%.

The identification of related commits from software repos-
itories is also the objective of Hammad [26]. This study
presents an approach to identify related and similar source
code modifications automatically. The textual contents of
commits are used to recover the related commits. However,
they do not discuss the threats to validity, considering the
precision and recall when assigning the commits to the related
ones.

Commit assignment to releases Shobe et al. [13] explain
how to mine releases on the Subversion version control
system using an approach similar to the range-based strategy.
However, they do not discuss the precision and recall of their
method.

We found studies comparing traditional and rapid releases of
the Firefox browser, which use the Mercurial version control
system. Mintyld et al. [12, 7] compare the releases regarding
software testing. They use the time-based strategy but only
assign the commits to Firefox’s major releases and explain that
it is hard to link commits to specific releases. Khomh et al.
[8, 9] compare the releases regarding quality. In the first work
[8], they check out the versions and compare them externally,
like comparing only the last commits of the releases. In the
second work [9], they use the time-based strategy to extract
information about the developers who commit the changes, the
number of commits, and their size. Clark et al. [6] compare
the releases regarding the security of the produced code. They
check out the code and use only the last commit. Souza et al.
[27, 28] analyze patch backouts (i.e., reversing commits) on
rapid releases using the time-based strategy.

VII. CONCLUSION

In this paper, we assessed the time-based and range-based
strategies to assign commits to releases. To do so, we created
a corpus with 100 relevant open source projects, comprising
13,419 releases and 1,414,997 commits. We implemented both
strategies in an open source tool and ran the strategies on all
the releases to compute each strategy’s precision and recall.

We could observe that the range-based strategy has similar
precision but higher recall than the time-based strategy. Thus,
stakeholders in charge of mining releases should consider
adopting the range-based strategy instead of the time-based.
If, for some reason only the time-based strategy is available,
stakeholders must know that its recall improves for releases
with many developers. However, its recall reduces for releases
with multiple base releases. Moreover, stakeholders using the
time-based strategy must be careful not to include unreachable
commits in the analysis because it drastically reduces the
strategy’s precision.

As future work, we intend to study the effects of changing
the base release and investigate the releases that achieved low
F-measure with either strategy to understand what caused the
issue. Hence, we may propose enhancements to the strategies
to achieve better results. We also intend to perform an in-
depth study on the effect of the different strategies in release
applications, such as release notes generation.
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