
UbiCheck: An Approach to Support Requirements

Definition in the Ubicomp Domain

Rodrigo O. Spínola, Felipe C. do R. Pinto and Guilherme H. Travassos
PESC-COPPE/UFRJ

Cidade Universitária, Centro de Tecnologia, Bloco H,
Sala 319, Rio de Janeiro, RJ, Brazil

+55 21 2562-8672

{ros, felipecrp, ght} @cos.ufrj.br

ABSTRACT

Ubiquitous computing brings a set of characteristics that are not

commonly found in conventional software projects. One of the

consequences is an increase in the software development

complexity. Additionally, traditional software engineering

techniques are not usually adequate to support the development of

this system category as they do not cover specific characteristics

of this domain. Therefore, this work presents UbiCheck - an

approach to support requirements definition in the ubicomp

domain, including the results of an initial observational study that

indicated such approach can be feasible.

Categories and Subject Descriptors

D2. Software Engineering: Requirements/Specifications.

General Terms

Documentation, Experimentation, and Theory.

Keywords

Requirement Engineering, Requirement Definition, Ubiquitous

Computing, Empirical Study.

1. INTRODUCTION
The insertion of defects throughout the development of

conventional software projects is a recurring issue and it should

not be different when dealing with ubiquitous software projects.

The effort spent by software organizations with rework ranges on

average from 40% to 50% of the total project development effort

[4]. Wheeler et al. [5] found it is possible to verify that rework

tends to grow as the development progresses. One of the main

reasons for this is the increase in the effort to correct defects in the

final activities of the development process as a result of defects

inserted and propagated from initial development activities such

as the requirements specification.

In this scenario, requirements definition represents a crucial phase

in software development. Its main goal is to develop requirements

specification that is complete, consistent and non-ambiguous,

becoming the basis for an agreement between all stakeholders

involved in the software project [1]. Several techniques and

methods have been proposed to deal with these issues [2].

However, most of them support the development of conventional

software projects which can reduce its efficacy and efficiency

when working with specific application domains [3].

Ubiquitous software projects have a set of characteristics

associated to the domain of ubiquity that cannot be commonly

found in conventional software projects [13]: service

omnipresence, context sensitivity, adaptable behavior, experience

capture, device heterogeneity, universal usability, fault tolerance,

scalability, quality of service, and privacy and trust. Therefore,

one of the main ubiquitous computing (ubicomp) challenges goals

is to understand how to build non-invasive computing services

and make them available in the environment for the users [6][7].

In this sense, Ducatel et al. [8], Niemela and Latvakoski [9] and

Sakamura [10] reported that ubiquitous software projects can

bring new challenges not addressed by current software

engineering techniques. For instance, in searching for new signs

of how to deal with the building of ubiquitous software projects

11 works were found in the technical literature related to

approaches that support the definition of ubiquity requirements

(requirements associated with the ubiquity characteristics) [15]

[16] [17] [18] [19] [20] [21] [22] [23] [24] [27]. These works can

identify in 8 approaches (Table 1) related to ubiquity

characteristics.

Although requirements definition may be considered a

fundamental software project development activity due its impact

on quality and costs, the support to this activity is still limited

when we consider ubicomp domain. For instance, analyzing the

works on Table 1, some issues can be observed: (1) the

approaches deals with a subset of the ubiquity characteristics

(adaptable behavior, context sensitivity, fault tolerance, and

privacy and trust); (2) only three approaches define a set of

guidelines about requirements definition; (3) the identified

approaches do not explore the ubicomp domain knowledge to

support their execution ; (4) only one work [27] describes a

process definition and a technique detailing that can be used to

support the execution of its activities.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’10, March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

306

Thus, to improve the quality of ubiquitous software and reduce

costs associated to rework, we believe that it is fundamental to

support the software engineer on the ubiquity requirements

specification activity. In this context, this paper presents

UbiCheck - an approach based on ubicomp domain knowledge to

support the definition of ubiquity requirements in ubiquitous

software projects. It is also summarized the evaluation of

UbiCheck and the resulting improvements.

Besides this introduction, this paper has 4 other sections. Section

2 presents UbiCheck. Next, Section 3 discusses the initial

evaluation of the approach through an observational study.

Section 4 presents the improvements in the UbiCheck. Finally,

Section 5 provides the final considerations to this work.

Table 1. Related Works and Ubiquity Characteristics

Ubiquity

Characteristics

Identified Approaches
[15] [16] [17] [18]

[19]

[20] [21] [22] [23]

[24]

[27]

Service Omnipresence

Context Sensitivity

Adaptable Behavior

Experience Capture

Device Heterogeneity

Universal Usability

Fault Tolerance

Scalability

Quality of Service

Privacy and Trust

2. UBICHECK
UbiCheck is a checklist-based approach to support requirements

definition in the ubicomp domain. According to Laitenberger et

al. [25], checklists can be used with the purpose of guiding

software engineers throughout the execution of a task. Thus, it is

expected that the using of UbiCheck would help software

engineers during the requirements definition activities increasing

the efficiency and effectiveness of such activity by reducing

omission defects and execution time.

UbiCheck composes a framework to support the definition and

verification of ubiquity requirements for ubiquitous software

projects [14]. The framework is based on a body of knowledge

regarding ubicomp [14]. This body of knowledge comprises two

elements: (1) characteristics, identifying the main concerns to be

dealt when working with ubiquitous software projects and; (2)

factors, defining how each characteristic can be covered in terms

of functionalities.

This body of knowledge composes the framework’s conceptual

core. In general, the framework supports the following stages: (1)

Body of knowledge configuration; (2) Software projects

characterization; (3) Software project’s ubiquity requirements

identification and specification, and; (4) Revision of the defined

software projects’ ubiquity requirements.

Figure 1 represents the stages and activities of UbiCheck. As can

be observed, the approach is composed by 4 sequential activities

grouped in 2 main steps regarding ubiquity requirements: (1)

Configuration and (2) Definition ubiquity requirements. The step

1 is usually executed in the initial definition of the Ubicheck’s

body of knowledge. It also can be used to allow the improvement

of this knowledge for a specific organization. On the other hand,

the step 2 is usually performed once for each ubiquitous software

project.

2.1 Step 1: UbiCheck Configuration
The goal of this step is to configure the body of knowledge from

the conceptual core (ubiquity characteristics and their respective

factors) to support the requirements definition activity. From this

conceptual core, it is possible to define: (1) Conceptual Models:

represent the main information regarding each ubiquity

characteristic considering their attributes, relationships, and

services; (2) General requirement Definition Guide (GDG):

checklist based on ubicomp domain to support the identification

of ubiquity requirements in software projects.

To illustrate these artifacts generation process, we will use the

conceptual core fragment about the characteristic experience

capture presented below:

Information Capture

 Capturing system user interaction information

 Capturing experiences automatically

Information Reasoning

 Analyzing interaction patterns

 Analyzing relationship among public and private experiences

Information Management

 Store captured information

 Represent users’ activities

 Represent users’ needs and preferences

2.1.1 Activity A: Preparing Conceptual Models
This activity consists of generating, for each ubiquity

characteristic, a model representing the main information

regarding ubiquity characteristics according to their respective

factors.

The ubiquity conceptual models have been developed as UML

class diagrams with the purpose of representing ubiquity

characteristics’ concepts and relationships in a graphical and

structured format. Additionally, aiming at consistency, the models

are generated based on a meta-model defining the types of

elements and valid relationships used to represent the ubiquity

characteristics and factors. A model fragment for the experience

capture characteristic is presented in Figure 2. We believe such

representation can increase the information understandability

related to different ubiquity characteristics by software engineers.

Despite the fact that those models can increase the

understandability of the conceptual core, they lack a clear vision

about the importance of each represented element. Therefore,

besides a graphical view, each characteristic model is also

represented by a hierarchical structure (tree of elements). The

criteria based on coupling between the models’ elements to

construct the hierarchy were adapted from [26]. For instance,

considering the model fragment showed in Figure 2, we can

Figure 1. UbiCheck overview.

307

define the hierarchical representation presented in Figure 3. This

set of information will be used to support the creation of the

checklists in the Activity B: Preparing GDG.

2.1.2 Activity B: Preparing GDG
In this activity, the General requirement Definition Guide is

created based on the tree of elements defined in the Activity A.

Basically, a question is created for each element of this tree

aiming at to support the requirements definition.

Once the elements represented in the elements tree are considered

important in ubiquitous software projects, the goal of those

questions is to guide the software engineer to insert the model’s

elements into the requirements specification document.

As a result, we have a GDG covering all ubiquity characteristics

and their respective factors evaluated as required for the software

project. Figure 3 shows the GDG questions preparation from a

branch of a tree of elements for the characteristic capture of

experience.

It is important to highlight that the conceptual core transformation

into conceptual model elements, organizes it considering the trees

of elements, and the GDG definition associated with the trees of

elements allows us to create traces amongst the different

transformations. This scenario allows a consistent evolution of the

mapped knowledge and the body of knowledge specialization for

specific projects needs. Moreover, once the body of knowledge

has been configured, it will be only changed whether new factors

or ubiquity characteristics can be identified in the technical

literature. This feature reduces the need to have an ubicomp

domain specialist to support the development activities in the

software project.

Finally, it is important to observe that Step 1 allows the

incremental improvement of techniques to define ubiquity

requirements through ubicomp domain knowledge maintenance

and the artifacts that support the software engineer activities.

After Ubicomp domain knowledge configuration, we can go one

step forward.

2.2 Step 2: Defining Ubiquity Requirements
The goal of this Step is to calibrate the GDG to use it in a specific

software project. The specialization process and how to use the

specialized guide to support the requirements definition are

explained in the following subsections.

2.2.1 Activity C: Specializing GDG
In this activity, the General requirement Definition Guide (GDC)

is transformed into a Specialized requirement Definition Guide

(SDG). The SDG construction process is based on a checklist to

characterize ubiquitous software projects defined by Spínola et al.

[13]. The characterization checklist identifies the relevant

ubiquity characteristics and factors for a particular software

project (a ubiquitous software project does not need to explore all

ubiquity characteristics). Next, the traces among the

characterization checklist questions and GDG questions are used

to transform the GDG into SDG.

2.2.2 Activity D: Defining Ubiquity Requirements
In this activity, the software engineer uses the SDG to support the

ubiquity requirements elicitation and their specification.

As described in Section 2.1.2, SDG is checklist based having a

series of questions indicating what type of ubiquity information

the software engineer should be aware during the requirements

elicitation activity. The SDG does not indicate how to proceed to

execute the requirements elicitation (for instance: interviewing,

questionnaire, or brainstorming).

Figure 4 illustrates a fragment of a SDG for the experience

capture characteristic. This specialized guide comprises: (1)

Instructions about its usage; (2) Ubiquity characteristics present

on the current software project; (3) Relevant information about

ubicomp as defined on Activity A – Configure UbiCheck; (4)

Questions about relevant ubiquity information that should be

identified by the software engineer.

3. OBSERVATIONAL STUDY
The goal of this study was to analyze UbiCheck, with the

purpose of characterize, with respect to its applicability, into the

context of ubiquitous software projects from the point of view of

software engineering students.

In this study, applicability relates to verify if software engineers

could understand and use UbiCheck in a ubiquitous software

project. For this, one of the two observable behaviors is expected:

B1: UbiCheck cannot be used by software engineers to support

ubiquitous software development; B2: UbiCheck can be used by

software engineers to support ubiquitous software development.

3.1 Instrumentation Planning
As instrumentation, the following forms were elaborated:

(1) Consent and Subject characterization (personal data, academic

degree, and experience level on software projects);

Figure 2. Fragment of Experience Capture Conceptual Model.

Figure 3. Elements Tree Fragment for Experience Capture

Characteristic.

Figure 4. Fragment of a SDG.

308

(2) Ad hoc Task Execution: this form intends to collect

information (effort in time scale) about the requirements

definition activity execution without UbiCheck support;

(3) UbiCheck Task Execution: this form intends to collect

information (effort in time scale) about the requirements

definition activity execution with UbiCheck support;

(4) UbiCheck Evaluation: it aims at to identify the potential and

benefits in using the proposed approach;

(5) Problems and Issues: this form’s goal is to identify the

problems and/or issues associated with UbiCheck using;

Besides, two ubiquity scenarios complement this study

instrumentation: (Scenario 1) the tracking of inventory items

while being transported through the university campus; (Scenario

2) the tracking of loaned bikes in a university campus.

3.2 Execution
The population of this study was represented by Master and PhD

students in the software engineering area. A set of 8 subjects from

an Object Oriented Software Engineering course took part. They

were grouped in 3 teams (A-3, B-3, and C-2 subjects). Each team

received the two ubiquity scenarios to increment the requirements

specification of an Inventory Management System. The

requirements definition of each scenario was made sequentially

according to the distribution presented on Table 2.

Table 2. Scenario Distribution and Effort to define the

ubiquity requirements.

 1st Iteration (ad hoc) 2nd Iteration (with UbiCheck)

Team A Scenario 1 300 min Scenario 2 240 min

Team B Scenario 1 240 min Scenario 2 120 min

Team C Scenario 2 180 min Scenario 1 180 min

During the study execution, the subjects signed the consent form

and filled in the forms that allowed us to capture the qualitative

data about UbiCheck applicability.

3.3 Results and Limitations
The empirical study execution allowed us to observe some

positive features and drawbacks of the proposed approach. The

positive features are:

 The subjects reported that UbiCheck helps in the ubiquity

requirements definition activity. They said the questions in

UbiCheck have led them to think about important issues in

ubicomp domain that they normally do not capture in the

requirements document.

 UbiCheck allowed for this group an effort (in time) reduction

on average of 23,3% to define ubiquity requirements (see

Table 2).

On the other side, the subjects also reported some issues

(improvement opportunities) of using UbiCheck:

 Ubicomp domain represents a knowledge intensive area but

the proposed approach did not provide enough support for

some terms used in the checklist. This caused a

misunderstanding of some concepts.

 It was not clear the relationship between the expected

answers of some questions in UbiCheck and the sections of a

requirements specification document. Thus, the software

engineers faced some issues on defining specifics ubiquity

requirements.

In general, the results suggested that Ubicheck could be possible

to support the behavior B2. However, some threats to validity

were observed considering this particular study:

 The study was executed with different academic degree ,

experience and knowledge levels graduate students;

 The two used scenarios were bit similar. This fact may have

influenced the reduction of the effort involved in the 2nd

iteration of the study;

 Population’s size does not allow a satisfactory statistical

treatment.

Therefore, it could be interesting to replicate this study to obtain

more indication about the observed behavior increasing the

confidence in results.

4. UBICHECK IMPROVEMENTS
The obtained results allowed us to evolve UbiCheck based on the

improvement opportunities reported in prior section. Thus, the

following enhancements are present on UbiCheck 2.0:

 A glossary of terms has been created and attached to the

GDG/SDG;

 For each question of the GDG/SDG, it was clearly defined

what is expected to be answered;

 For each question of the GDG/SDG, it was defined how the

related concept should be described in terms of the

requirements specification document (specification item).

For this, a set of concepts usually present in a requirements

specification document (for instance, functional requirement,

use case description, actor, and business rule) was defined

and associated with the corresponding GDG/SDG questions.

Figure 5 illustrates a SDG new version fragment for the

experience capture characteristic. Besides the elements previously

shown in Figure 4 (A, B, C, and D), this new guide version

includes: (E) Link to glossary of terms; (F) Additional

information about answers expectation, and; (G) Suggestion about

where a concept should be described into the requirements

specification document.

5. CONCLUSION
This paper presented UbiCheck, a checklist based approach to

support the requirements definition in the ubicomp domain.

Besides, the importance of a body of knowledge regarding

ubicomp to support ubiquitous software development was also

discussed. Ubicheck is supported by such a body of knowledge.

The development of Ubicheck follows an experimental based

methodology. In this paper, the initial study to evaluate the use of

Ubicheck has been summarized. These initial results were useful

to indicate a possible Ubicheck´s feasibility and to allow its

evolution. However, this study should be replicated aiming at to

confirm that Ubicheck can support software engineers on

specifying ubiquity requirements.

Currently, we are working on the planning of a new study to

assess the actual benefits of UbiCheck associated to the reduction

309

of omission defects inserted during the definition of ubiquity

requirements in ubiquitous software projects development.

6. ACKNOWLEDGMENTS
Our thanks to CNPq (Grant 75459/2007-5), CAPES, and FAPERJ

for the financial support.

7. REFERENCES
[1] IEEE, 1998, “IEEE Recommended Practice for Software

Requirements Specifications - Description, Standard 830”,

IEEE Press.

[2] B. Nuseibeh and S. Easterbrook, "Requirements engineering:

a roadmap," in ICSE '00: Proceedings of the Conference on

The Future of Software Engineering. New York, NY, USA:

ACM Press, 2000, pp. 35-46.

[3] Oliveira, K. M., Zlot, F., Rocha, A.R. C., Travassos, G. H.,

Silva, C. G. M., Menezes, C. S., (2004). Domain Oriented

Software Development Environment. Journal Of Systems

And Software, v. 72, n. 2, p. 145-161.

[4] Boehm, B. W., Basili, V.R., 2001, “Software Defect

Reduction Top 10 List.”. IEEE Computer 34: 135-137.

[5] Wheeler, D.A., Brykezynski, B., Meeson, R.N., 1996,

Software Inspections: An Industry Best Practice, IEEE.

[6] Weiser, M. “The Computer for the 21st Century”. Scientific

American 1991, pp. 94-104.

[7] Abowd, G., 1999. Software engineering issues for ubiquitous

computing. Proceedings of the 21st International Conference

on Software Engineering.

[8] Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J.,

Burgelman, J.-C. (2003). “Ambient Intelligence: From

Vision to Reality”. IST Advisory Group Draft Rep.

[9] Niemela, E., Latvakoski, J., 2004. Survey of requirements

and solutions for ubiquitous software, Proc. of the 3rd Int.

Conf. on Mobile and Ubiquitous Multimedia, p.71-78,

College Park, Maryland.

[10] Sakamura, K. (2006) “Challenges in the Age of Ubiquitous

Computing: A Case Study of T-Engine, An Open

Development Platform for Embedded Systems”. ICSE 2006,

China. Pages:713-720.

[11] Russel, D.M., Streitz, N.A., Winograd, T., 2005. Building

disappearing computers. Com. of the ACM, pp. 42 – 48.

[12] Kitchenham, B., Dybå, T., Jorgensen, M. (2004) “Evidence-

based Software Engineering”, Proceedings of the 26th ICSE,

Scotland, UK, v.10 n.4, pp.437-466.

[13] Spínola, R.O., Silva, J.L.M., Travassos, G.H. (2007)

“Checklist to Characterize Ubiquitous Software Projects”. In:

XXI SBES – Brazilian Symposium on Software Engineering,

João Pessoa, Brazil.

[14] Spínola, R.O., Pinto, F.C.R., Travassos, G.H. (2008)

“Supporting Requirements Definition and Quality Assurance

in Ubiquitous Software Project”. In: 3rd ISOLA, Greece.

[15] Jorgensen, J. B., and Bossen, C. Requirements Engineering

for a pervasive health care system. Proc. of the 11th IEEE Int.

Requirements Engineering Conference, 2003, 55-64.

[16] Goldsby, H. and Cheng, B. H. C. Goal-Oriented Modeling of

Requirements Engineering for Dynamically Adaptive

System, 14th IEEE Int. Requirements Engineering

Conference, 2006, 345-346.

[17] Hong, D.; Chiu, D. K. W., and Shen, V. Y. Requirements

elicitation for the design of context-aware applications in a

ubiquitous environment. Proc. of the 7th International

Conference on Electronic Commerce, ACM, 2005, 590-596.

[18] Chiu, D. K. W.; Hong, D.; Cheung, S. C., and Kafeza, E.

Adapting Ubiquitous Enterprise Services with Context and

Views. 10th IEEE Int. Enterprise Distributed Object

Computing Conference, 2006, 391-394.

[19] Chiu, D. K. W., Hong, D., Cheung, S. C., and Kafeza, E.

Towards Ubiquitous Government Services through

Adaptations with Context and Views in a Three-Tier

Architecture. Proc. of the 40th Annual Hawaii Int. Conf. on

System Sciences, IEEE Computer Society, 2007.

[20] Bo, C., Xiang-Wu, M., and Jun-Liang, C. An Adaptive User

Requirements Elicitation Framework. 31st Annual Int.

Computer Software and Applications Conf., 2007, 501-502.

[21] Xiang, J., Liu, L., Qiao, W., and Yang, J. SREM: A Service

Requirements Elicitation Mechanism based on Ontology.

COMPSAC, 2007.

[22] Markose, S., Liu, X.F., and McMillin, B. A Systematic

Framework for Structured Object-Oriented Security

Requirements Analysis in Embedded Systems. IEEE Int.

Conf. on Embedded and Ubiquitous Comp., 2008,75-81.

[23] Oyama, K., Jaygarl, H., Xia, J., Chang, C. K., Takeuchi, A.,

and Fujimoto, H. Requirements Analysis Using Feedback

from Context Awareness Systems. COMPSAC, 2008.

[24] Ming, H., Oyama, K., and Chang, C. K. Human-Intention

Driven Self Adaptive Software Evolvability in Distributed

Service Environments. 12th IEEE International Workshop on

Future Trends of Distributed Comp. Systems, 2008, 51-57.

[25] Laitenberger, O., El Eman, K., and Harbich, T. G. An

Internally Replicated Quasi-Experimental Comparison of

Checklist and Perspective-Based Reading of Code

Documents. IEEE Trans. Softw. Eng., IEEE Press, 2001.

[26] Lima, G. M. P. S.; Dias Neto, A. C.; Travassos, G. H.. A

Heuristic Based Testing Strategy for the Identification of

Class Integration Order in Object-Oriented Software. CLEI

Electronic Journal, v. 11, p. 1-13, 2008.

[27] Goldsby, H.J.; Sawyer, P.; Bencomo, N.; Cheng, B.H.C.;

Hughes, D. Goal-Based Modeling of Dynamically Adaptive

System Requirements; Engineering of Computer Based

Systems, 2008. ECBS 20008.

Figure 5. Fragment of a SDG.

310

