
T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 587–603, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Requirements Definition and Quality
Assurance in Ubiquitous Software Project

Rodrigo O. Spínola, Felipe C.R. Pinto, and Guilherme H. Travassos

PESC-COPPE/UFRJ
Cx. Postal 68.511, CEP 21945-970, Rio de Janeiro, RJ, Brasil

{ros,felipecrp,ght}@cos.ufrj.br

Abstract. The development of ubiquitous software project demands the use of
specific software technologies to deal with the inherent complexity of this type
of project. Despite the advances in the software engineering field, the building of
ubiquitous software still represents a grand challenge. For instance, secondary
and primary studies indicated the existence of 13 ubiquity characteristics that can
influence ubiquitous software projects. Therefore, in this paper we describe these
ubiquity characteristics organized into a body of knowledge regarding ubiquitous
computing and used to characterize ubiquitous software projects. Besides, an on-
going research concerned with supporting ubiquity requirements definition and
verification (checklist based inspection) activities is also introduced.

Keywords: Ubiquitous Computing, Requirements Engineering, Software Qual-
ity, Experimental Software Engineering.

1 Introduction

The increasing complexity and exposure to new risks can prevent traditional software
technologies to keep their effectiveness when used to develop ubiquitous software
projects. This is due to the different software characteristics involved in the engineer-
ing of such projects that must be considered for assuring the delivering of quality
products [4, 11, 13].

Into this software engineering context, some development challenges such as qual-
ity, time and budget constraints can be made explicit by answering questions such as:
(1) What (new) software technologies are necessary to deal with the software ubiquity
characteristics?; (2) What are the risks associated with ubiquitous software projects?;
(3) What quality characteristics software engineers should have in mind when accom-
plishing ubiquitous software projects? (4) How to support the requirements definition
and quality assurance activities in ubiquitous software projects?

Additionally, answering these questions can represent big challenges because:

• Ubiquitous computing (ubicomp) represents a multidisciplinary and new research
intensive knowledge area [11]. Consequently, we can observe a constant evolu-
tion of ubicomp concepts in software related areas such as computer networks,
signal processing, optimization, and artificial intelligence among others;

588 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

• A small number of papers evidencing the use of software engineering principles
to support the development of ubiquitous software projects can be currently
found in the technical literature, making hard identifying the ubiquity characteris-
tics influence in software projects.

These challenges combined with our experience on dealing with software projects
involving requirements regarding ubiquity motivated us to try to understand what
could be the ubiquity characteristics influence in the software development life cycle.
The difficult on dealing with this new software category requirements have driven us
to think about how to enlarge the usual body of knowledge regarding the development
of conventional software projects to also embrace ubicomp applications.

Sakamura [13] states that the creation of ubiquitous software applications is hard
and can involve several ubiquity characteristics. It was also observed by Spínola et al.
[14], which identified and evaluated 10 relevant characteristics concerned with ubiqui-
tous software, such as service omnipresence, invisibility, context sensitivity, adaptable
behavior, experience capture, service discovery, function composition, spontaneous
interoperability, heterogeneity of devices and fault tolerance by undertaking a system-
atic literature review. In complement, information regarding functional and restrictive
factors concerned with the main issues when developing ubiquitous software projects
have been described. At this point, a functional factor is concerned with the facts or
situations related to functional requirements. A restrictive factor is concerned with the
facts or situations related to non- functional requirements.

This information can be useful when a software engineer is looking for software
technologies to use in the software projects. For instance, some software requirements
technologies can be used to deal with one or other ubiquity characteristic [26, 27, 28,
21, 20, 19, 10, 8, 2]. However, their use in ubiquitous software projects can be limited
due to the lack of knowledge on how to apply them when ubiquity characteristics are
combined into the project.

Aiming at providing support for software developers in characterizing and devel-
oping ubiquitous software projects, this paper describes an on-going research towards
the creation of a framework to support software technologies concerned with the
definition and quality assurance of ubiquity requirements. The first target is repre-
sented by organizing knowledge regarding ubiquitous software projects through sec-
ondary and primary studies and making it available to the practitioners. It is intended
to support development activities concerned with ubiquity requirements specification
and validation (checklist based inspection). So, a set o facilities is going to be avail-
able supporting:

• To choose relevant ubiquity characteristics for the software project (level of rele-
vance can depend on the application domain or project’s requirements);

• To identify the ubiquity requirements (functional) through a list of functional
factors regarding each selected ubiquity characteristic;

• To define the ubiquity requirements, by guiding the software engineer to properly
detail all requirements accordingly the selected ubiquity characteristic; and,

• To assure the ubiquity requirements quality, by providing checklists that can
make the software engineer able to inspect whether all expected ubiquity features
were appropriately captured by the requirements specification.

 Supporting Requirements Definition and Quality Assurance 589

This paper is organized in eight sections, including this Introduction. In the follow-
ing section, the definition of ubicomp and its characteristics are discussed. In se-
quence, the results of a detailed analysis for each ubiquitous characteristic considering
its functional and restrictive factors are presented. Then, we present an approach to
characterize applications considering their ubiquity adherence level. We also present
some results obtained with the use of the characterization approach. In sequence, the
evaluation of the concepts involving ubiquitous computing previous discussed is
presented. After that, some concepts about requirements engineering and related
works are analyzed. In the following section, the proposed framework is explained.
Finally, we summarize the main contributions of this paper and future perspectives of
this research.

2 Ubiquitous Computing Characteristics

Weiser introduced the area of ubiquitous computing and put forth a vision of people
and environments augmented with computational resources providing information
and services when and where desired [17]. Weiser’s vision also described a prolifera-
tion of devices at varying scales, ranging in size from hand-held “inch-scale” personal
devices to “yard-scale” shared devices. That is, the computer is integrated into the
environment in such a way that its use becomes non intrusive. This definition set the
origin of the term Ubiquitous Computing and, although it is important for presenting a
new computing paradigm, we believe it is not currently complete at all. This positive
lack of completeness reflects its importance and innovation at that time, and how fast
technology has evolved.

Therefore, an investigation towards an updated definition of ubiquitous computing
seems to be necessary. So, this section intends to present the reached results of a sys-
tematic review whose goals were the field understanding and describing an up-to-date
ubiquitous computing definition that could support our research: (Q0) What is ubiqui-
tous computing?; (Q1) How ubiquitous computing is currently being presented?; (Q2)
What characteristics do define applications for ubiquitous computing?

To accomplish this systematic review, it was elaborated and accomplished a re-
search protocol. The items below define the main characteristics of this protocol:

• Keywords: ubiquitous computing, pervasive computing, ubiquitous application,
ubiquitous system, ubiquitous software, pervasive application, pervasive system,
pervasive software, feature, requirement, characteristic, definition, characteriza-
tion, and concept.

• Paper sources: IEEE Portal, ACM Digital Library, INSPEC, and EI COMPENDEX.
These digital libraries have been chosen by convenience because they were fully
available to the researchers.

• Example of a search string (Q0 only) for ACM Digital Library:
+"ubiquitous computing" abstract:concept abstract:definition abstract:characteristc
+"pervasive computing" abstract:concept abstract:definition abstract:characteristic

• Inclusion and exclusion criteria: These criteria define statements that must be true
for the paper be included in the selected papers set. They must be available on the
internet, be written in English, provide a ubiquitous definition (Q0 only), report

590 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

current applications regarding ubiquitous computing concepts (Q1 only), report
software application (applications concerned with supporting software are not
considered) and present characteristics associated with ubiquitous systems (Q2
only).

• Preliminary studies selection process: each returned publication must have its
abstract and introduction analyzed by two researchers and, based on the inclusion
and exclusion criteria, they select it or not to a more thorough analysis.

To summarize, following the research protocol 41 papers among 751 were selected
to extract information. These papers supported the identification of an updated ubiqui-
tous computing definition besides a set of concepts characterizing ubiquitous software
projects, as described below.

Ubiquitous computing is present when computational services or facilities become
available to the people in such a way that computer is no longer visible nor needed to
be used as an essential tool to access these services or facilities. The services or facili-
ties can materialize themselves at any time or place, transparently, through the use of
common daily devices. To make it happens it is desired that systems composing this
domain take into consideration the following characteristics (an illustrative scenario
aiming at providing our interpretation is also provided):

• Service Omnipresence (SO): It allows users to move around with the sensation
of carrying computing services with them;
o Scenario: An employee is taking part in a business meeting but needs to

leave it. However, it also needs monitoring the meeting progress to report its
results for the manager. When the employee leaves the meeting’s room, the
distance conference managing software can be activated on the smartphone.
Thus, the employee will have access to the meeting everywhere when it is
moving around.

• Invisibility (IN): The ability of being present in daily use objects, weakening,
from user’s point of view, the sensation of explicit use of a computer and enhanc-
ing the perception that objects or devices can provide services or some kind of
“intelligence”. Thus, it demands natural interfaces to facilitate a richer variety of
communications capabilities among humans and computer systems. The goal of
these natural interfaces is to support common forms of human expressions and
leverage more of our implicit actions in the world [23];
o Scenario: a personal health care system that must be constantly monitoring

some health variables without patients’ intervention.
• Context Sensitivity (CS): Ubiquitous systems should have mechanisms to col-

lect information from the environment where it is being used;
o Scenario: a system to control a refrigerator should be constantly monitoring

the temperature to keep the device in the ideal state for products conservation.
• Adaptable Behavior (AB): The ability of dynamically to adapt itself accordingly

the offered environment services, respecting its limitations;
o Scenario: By identifying the bandwidth reduction to the point of harming the

audio and video transmission, the video conference management software
should reduce the audio and video quality allowing the normal communica-
tion flow between the conference participants.

 Supporting Requirements Definition and Quality Assurance 591

• Experience Capture (EC): Ubiquitous systems should have mechanisms to
support the capturing and registering of experiences for later use;
o Scenario: A software for ambient intelligence can identify common user be-

haviors, for example: when arrives at home, the user turns on the room light,
heats water for coffee, turns on the tub and sets the water temperature to 28 °
C. The software can manage these activities as soon as it identifies the user
arrives at home without repetitive user’s commands.

• Service Discovery (SD): This characteristic states that ubicomp systems should
have mechanisms to support pro-active discovery of services, which should be
according to the environment where it is being used in order to find new services
or information to achieve some desired target;
o Scenario: A smartphone software can identify services provided by a super-

market to support the purchase of products by the customer, such as a map
with promotions and products location.

• Function Composition (FC): To be able to creating a service required by the
user based on available basic services;
o Scenario: A user needs to have a spreadsheet view and generate a PDF file

with the view outcome and these services are not available on the work-
station. The software can identify the necessary services and makes them
available for use.

• Spontaneous Interoperability (SI): The ability to change partners during its
operation and according to its movement;
o Scenario: A person is moving and the software, running on a PDA, is playing

a task-intensive processing. During the moving, the software can interact
with other devices in the environment for temporary allocation of processing.

• Heterogeneity of Devices (HD): It provides application mobility among hetero-
geneous devices. That is, the application could migrate among devices and adjust
itself to each one of them;
o Scenario: A software for stock market monitoring allows the access to all its

functionalities through a workstation at the office. However, in other organ-
izational unit only a PDA is available. In this situation, the software should
migrate part of its features to be accessed by a PDA in a way that a user
could continue to access the necessary information.

• Fault Tolerance (FT): The ability to self adapt when facing environment’s faults
(for example, on-line/off-line availability).
o Scenario: ubiquitous systems are liable to a large number of events that can

cause system failure, such as, sensors with hardware problem, network fail-
ure, among others.

At this point, it is important to notice that the ubicomp definition captures the con-
ditions where we can access computerized resources in a ubiquitous way. Besides,
ubiquitous systems have a well-defined scope, and this scope is influenced by the
ubiquity characteristics set present in the application. We believe it happens because
ubiquity can be considered a system property and it can be also partially achieved.
Thus, a system can implement completely or partially the functionalities associated
with the ubiquity characteristics.

592 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

3 Functional and Restrictive Factors Related to Ubicomp
Characteristics

The ubiquity characteristics previously mentioned are still described in high ab-
straction level, making hard to understand how they could influence the software
functionalities or restrict the software design possibilities. Therefore, it is important to
make explicit functional and restrictive information for each one of the ubiquity char-
acteristics. For this, a complementary systematic literature review was undertaken. Its
goal was to answer the question: what are the functional and restrictive factors associ-
ated with each one of the ubiquitous software characteristics?

The research protocol previously mentioned (section 2) was reused and evolved to
support this study. The items below define the main variations:

• Keywords: ubiquitous computing, pervasive computing, functional requirement,
functionality, feature, characteristic, non-functional requirement, quality re-
quirement, invisibility, context sensitivity, adaptable behavior or task dynamism,
capture of experiences, service discovery, spontaneous interoperability, device
heterogeneity and fault tolerance.

• Paper sources: IEEE Portal and ACM Digital Library. These digital libraries have
been chosen for the sake of simplicity (reduction in the number of search strings)
and full availability to the researchers.

• Example of a search string for the IEEE Portal: (('pervasive computing' <or>
'ubiquitous computing') <in> metadata) <and> ((('functional requirement' <or>
functionality <or> feature <or> characteristic) <or> 'non-functional requirement'
<or> 'quality requirement')) <in>metadata) <and> ('computer everywhere')

• Inclusion and exclusion criteria: the papers must be available on the internet, the
papers must be written in English and the papers must provide information re-
garding functional and/or restrictive factors associated with each ubiquitous char-
acteristic.

• Preliminary studies selection process: each returned publication must have its
abstract and introduction analyzed by one researcher and, based on the inclusion
and exclusion criteria, to be selected or not to a more thorough analysis. Conflicts
will count with a second researcher to help on the inclusion decision.

To summarize, 59 papers among 599 were selected to extract information following
the research protocol. Using the acquired data, it was possible to identify 168 factors
(123 functional and 45 restrictive) (the complete set of functional and restrictive factors
can be found at http://www.cos.ufrj.br/~ros/ubforms.html). Moreover, it was also pos-
sible to group the factors accordingly their meaning and conceptual linkage, associat-
ing each factor to just one group of factors. For example, for the “Context Sensitivity”
characteristic, the factors “Contextualize obtained information” and “Store informa-
tion” can be grouped into the “Context Information Management” factor group.

The grouping made easier the analysis process due to the great number of factors
found by the systematic literature review. Table 1 summarizes quantitatively the
reached results. The first column shows the ubiquity characteristics. The second and
third columns show how many studies were found regarding each characteristic, in
absolute and percentage values respectively considering the set of selected papers for

 Supporting Requirements Definition and Quality Assurance 593

analysis. The fourth and fifth columns show how many functional and restrictive
factors were found for each ubiquity characteristic, respectively. At the last column, it
is presented the percentage distribution of factors per characteristic.

From Table 1 it is possible to observe that, for all ubiquity characteristics but ser-
vice discovery and fault tolerance, the focus is concentrated in the functional factors.
This observation is based on the fact that the number of identified functional factors is
greater than the number of restrictive factors. Besides, it can represent an indication
that more researches on ubicomp have been made with the purpose of investigating
how ubiquitous software projects can be defined in terms of functionalities. However
more investigation is necessary to understand this behavior.

Table 1. Ubiquity Characteristics and correspondingly amount of functional/restrictive factors

Ubiquity Characteristic Presence % of 59 Functional Restrictive % of 168
Service Omnipresence (SO) 28 47,5 9 1 6,0
Invisibility (IN) 26 44,0 8 2 6,0
Context Sensitivity (CS) 56 94,9 22 8 17,9
Adaptable Behavior (AB) 52 88,1 24 8 19,0
Experience Capture (EC) 11 18,6 7 0 4,2
Service Discovery (SD) 28 47,5 13 13 15,5
Function Composition (FC) 19 32,2 18 5 13,7
Spontaneous Interoperability (SI) 21 35,6 10 2 7,1
Heterogeneity of Devices (HD) 18 30,5 9 3 7,1
Fault Tolerance (FT) 11 18,6 3 3 3,6

Total of factors 123 45

4 Characterizing Ubiquitous Software Projects

Ubiquitous software projects can exhibit different levels of adherence to the ubiquity
characteristics and their respective factors (these different levels of adherence can be a
consequence of the application domain and project’s requirements, for instance) [14].
It seems that the comprehension about how these ubiquity characteristics are usually
explored in software projects can be important to support the proposal of new soft-
ware engineering technologies regarding the development of ubiquitous software
projects.

Therefore, taking into account the concepts previously described, we have designed
a checklist and proposed an approach to support the characterization of software pro-
jects accordingly their ubiquity adherence level. Basically, this characterization ap-
proach is composed by three steps: (1) Identifying the presence of the functional and
restrictive factors of each ubiquity characteristic considering the ubiquitous software
project requirements set; (2) Assessing the adherence level of each ubiquity character-
istic for the software project based on the presence/absence of each correspondent
functional and restrictive factor; (3) Representing the ubiquity adherence level for the
system through using the values obtained in the step 2 to generate a graph.

To support the steps 2 and 3, it has been built a spreadsheet-based form to calculate
the adherence level for each ubiquity characteristic. Fig. 1 shows a fragment of the
proposed checklist. Basically, as the user fills in the Status column, the Factor Group
Adherence Level and Characteristic Adherence Level columns can be calculated for

594 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

each group of factors and the ubiquitous computing characteristic, respectively. In the
final step, the evaluated percentage values of the Ubiquity Characteristics Adherence
Level column are used to draw a graph representing the software project ubiquity
adherence level. For instance, Fig. 2 (left graph) represents the obtained graph when
applying this checklist to the ubiquitous application presented in [16]. We can notice
that a real ubiquitous software project can differ from the captured ubiquitous sce-
nario (sections 2 and 3) observing the left and right graph presented on Fig. 2.

Fig. 1. A checklist fragment to characterize ubiquitous software projects

Fig. 2. Example of ubiquity characteristics and their adherence levels

This checklist has also been used to characterize 12 different ubiquitous software
projects [1, 3, 5, 6, 7, 9, 12, 15, 16, 18, 29, 30]. A detailed description of the charac-
terization process and its results can be found in [22]. An interesting behavior could
be observed: if the number of factors identified for each ubiquity characteristic in-
creases or decreases, the same happens with the number of factors implemented in the
software projects. This behavior can indicate: a) there is a natural gap between the
state-of-the-art and state-of-the-practice; b) ubiquitous software projects can capture
those ubicomp characteristics differently. However, an exception to this behavior was
observed regarding the Function Composition characteristic. None of the 12 ubiqui-
tous software projects reported to deal with any of the 23 factors regarding the FC

 Supporting Requirements Definition and Quality Assurance 595

characteristic. This behavior was not expected because this ubiquity characteristic has
been considered required in about 32.2% of the analyzed papers from the second
systematic review (section 3). A possible explanation could be the difficulty to deal
with the inherent complexity regarding the composition of functions in software. As
stated before, more investigation is necessary to also understand this behavior.

An additional observed behavior is regarding the focus on some specific ubiquity
characteristics. It seems that ubiquitous software projects pay more attention to the
invisibility, context sensitive and adaptable behavior characteristics. The other ones
seem to appear as isolated initiatives, even considering the analyzed projects represent
examples in the years’ range 2000-2007, where some technological evolution took
place. We did not found any feasible explanation for this behavior. However, some
questions could be raised:

• Does this behavior represent a natural gap between the state-of-the-art and state-
of-the-practice that deserves further investigation?

• Is there a need to evaluate the set of identified ubiquity characteristics and their
functional and restrictive factors?

Some feasible answers to these two questions could be, respectively:

• The set of identified ubiquity characteristics and their functional and restrictive
factors make sense, and the distance between the state-of-the-art and state-of-the-
practice is natural and relates to the technology evolution;

• There are some adjustments that must be applied to the set of identified ubiquity
characteristics and their correspondingly functional and restrictive factors.

One could consider the answers can make sense. However, further investigation is
necessary, what leads us to consider the ubiquity characteristics and their associated
factors evaluation directly in the field. Therefore, we considered to survey ubicomp
researchers which is described in the next section.

5 Evaluating Ubicomp Concepts through a Survey

The goal of this study was to analyze the previously described ubiquity characteristics,
their factors, and group of factors extracted from the technical literature with the pur-
pose of characterizing with respect to their applicability and scope into the context of
ubiquitous software projects from the point of view of software engineering research-
ers working with the research and development of ubiquitous software projects.

This study was planned to survey ubicomp researchers considering the following
questions regarding the previously described set of ubiquity characteristics and func-
tional and restrictive factors:

• Is there any additional ubiquity characteristic that is not present in the initial set
that should be included?

• Is there any ubiquity characteristic present in the initial set that should be ex-
cluded?

• Is there any additional ubiquity characteristic factor group or factor that is not
present in the initial set that should be included?

596 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

• Is there any ubiquity characteristic factor group or factor present in the initial set
that should be excluded?

• Are the ubiquity characteristics and their associated factors and factor groups
applicable to characterize ubiquitous software projects?

This survey has already been planned and executed, in a first moment, considering
the Brazilian researcher’s population. The choice of the subjects was based on the
CNPq’s (National Council for Scientific and Technological Development) Research
Groups Search Directory considering those ones which list ubicomp as one of their
research interests. The subjects were contacted by e-mail (at total 60 ubicomp re-
searchers have been invited), and the questionnaire was also sent by e-mail. The ques-
tionnaire was organized to be filled in three steps:

1) Characterization of the subjects’ background and skills. In this step the sub-
jects were asked about his/her personal data (name, email), academic degree,
experience level on software project development (in years), and the number
of executed software projects per ubicomp characteristic;

2) Identification of the ubiquity characteristics that should be included/
excluded/kept in the initial set. The subject can confirm which ubiquity charac-
teristics are important to characterize ubiquitous software projects, input
additional characteristics that he/she considers important, or exclude some
characteristics of the initial set;

3) Identification of the ubiquity characteristic factor groups and factors that
should be included/excluded/kept in the initial set. For each factor group and
factor, the subject can confirm their importance, input additional factor groups
or factors not included in the initial set that he/she considers important, or ex-
clude some of them.

At the end, 10 subjects (about 17% of the invited researchers) answered the ques-
tionnaire (8 of them PhDs). Table 2 shows the researchers’ skill level for each ubiq-
uity characteristic where: (1) High: researches and has taken part of more than two
software projects considering the ubiquity characteristic; (2) Medium: researches and
has taken part of one or two software projects considering the ubiquity characteristic.
(3) Low: just researches about the ubiquity characteristic; (4) None: does not research
neither has taken part of a software project with the ubiquity characteristic.

For the analysis stage, each subject had a different weight according to his/her
background and skill level. Researchers with higher experience/skill level had greater
weight. After the weights definition, the answers from all subjects were evaluated for
each evaluated ubicomp characteristic, factor group, and factor. It is important to
notice that, except the fault tolerance characteristic, all others have been evaluated by
at least one researcher with high skill level.

The results allowed us to evolve the initial set of ubiquity characteristics, factors
and their factor groups. Basically, the changes were: (1) Inclusion of three additional
ubiquity characteristics: scalability, quality of service, and privacy and trust; (2) Re-
organization of the ubiquity characteristics considering the two perspectives: func-
tional and restrictive; (3) Exclusion of three functional factors.

 Supporting Requirements Definition and Quality Assurance 597

Table 2. Researchers’ skill level

ID Academic
Degree

SO IN CS AB EC SD FC SI DH FT

R01 M.Sc. H M H M H M M L N L
R02 M.Sc. H H H H M M M M M M
R03 Ph.D. L L M M L M M M N L
R04 Ph.D. H L L L L L L L L L
R05 Ph.D. H M H H L M M L H N
R06 Ph.D. H M H M L L L L H L
R07 Ph.D. M M H H H M L M M L
R08 Ph.D. M M L H H H M M N N
R09 Ph.D. L L H H H N M M M M
R10 Ph.D. H L L H M L H H N N

The initial ubiquity characteristics set organization before and after survey execu-

tion is shown in Fig. 3. Before survey execution, 10 ubiquity characteristics were iden-
tified by the systematic literature reviews (sections 2 and 3). The survey execution
allowed us to observe that those 10 characteristics can also be structured considering
the two different perspectives: functional and restrictive. This new categorization
seems to make sense because there are characteristics that are clearly related with non-
functional software aspects and they can bring some constraints on how the functional
characteristics are implemented. Moreover, 3 new restrictive ubiquity characteristics
were identified: scalability, quality of service, and privacy and trust. Additionally, the
fault tolerance characteristic was included into the ubicomp restrictive characteristics
group.

Fig. 3. Ubicomp characteristics definition before and after survey execution

These findings allowed us to evolve the set of knowledge regarding ubiquitous
software projects and their characteristics. At this point in time, it was able to define a
body of knowledge regarding ubicomp, to provide a conceptual framework to guide
new researchers and practitioners in the ubiquitous software projects development,
and, to evaluate the proposed checklist. Considering the obtained qualitative data,
researchers suggested the importance of supporting software engineering activities
regarding ubiquitous software projects, mainly those related with requirements speci-
fication and project planning.

598 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

6 Ubicomp and Requirements Engineering

The results obtained in our research regarding software development in general in-
creased our interest in the challenges related with ubicomp requirements engineering.
We are particularly interested on software technologies to support activities regarding
requirements definition and quality assurance considering the ubicomp scenario. Well
specified requirements can be considered a success factor to deliver software products
with the expected quality and following the project budget [25]. It should not be dif-
ferent when dealing with ubiquitous software projects.

For this, we accomplished an ad-hoc literature review influenced by the systematic
review principles. The review goal was to identify the existence of approaches sup-
porting requirements definition and verification activities regarding the ubiquity char-
acteristics (section 5). The following sources of information were analyzed: IEEE and
ACM Digital Library, Ubicomp Proceedings and International Requirements Engi-
neering Conference Proceedings. Additionally, one paper [2] analyzing the bibliogra-
phy reference on the selected papers has been identified.

This review resulted in the selection of nine papers [2, 8, 10, 19, 20, 21, 26, 27, 28]
to extract information. All of them presented requirements definition techniques or
examples of requirements definition. Among them, the approach proposed by Chiu et
al. [27] presents a set of steps to support activities regarding requirements elicitation
and specification that could be used in a more general way. However, in the paper it is
limited to the context sensitivity characteristic.

The other proposals have a more limited scope. Two of them just show how the
requirements of a ubiquitous system are defined [21, 28]. In both cases, the require-
ments are only listed and textually detailed in the paper without any elaborated de-
scription about the technique supporting their definition and verification. Finally, it is
important to notice that it was not found any quality assurance technique regarding
ubiquity requirements for ubiquitous software projects.

7 A Framework to Support Definition and Quality Assurance
Activities Regarding Ubiquity Requirements in Software
Projects

Hereafter, we are going to present a framework proposal to support activities regard-
ing the definition of ubiquity requirements and their verification and validation. It
represents an on-going research aiming at the establishment of a software technology
to deal with all nine ubicomp functional characteristics (section 5). We recognize the
importance of non-functional requirements for software development. However, the
decision regarding initially research support for functional requirements about ubiqui-
tous software projects is due to the fact that ubicomp researches currently are more
focused on the functional requirements of software [14].

The proposed framework is composed by a set of facilities associated with ubiquity
requirements definition, verification, and validation activities. Fig. 4 shows the sup-
ported facilities (white boxes), their relationship with requirements activities, and their
respective consumed/produced artifacts (gray boxes). It also shows that framework
facilities are based on the ubicomp body of knowledge previously discussed and ac-
quired through secondary and primary studies (systematic reviews and survey).

 Supporting Requirements Definition and Quality Assurance 599

Fig. 4. Overview of the framework

In the next three subsections, we will present how the framework intends to pro-
vide a complementary set of facilities that is not given by the conventional software
engineering techniques to properly deliver ubiquitous software products in the context
of requirements activities.

7.1 Requirements Elicitation

Requirements elicitation is the practice of obtaining the requirements of a system
from users, customers and other stakeholders [25]. In the context of this work, we are
concerned with ubiquity requirements for software projects. In order to support this
activity, the proposed framework has two facilities:

Identifying ubiquity characteristics. This facility intends to help the requirements
analyst to identify the ubiquity characteristics that should be considered in the software
project. Therefore, for each ubiquity characteristic, a set of questions was defined to
help identifying which one of them should be included in the software. The definition
of these questions was intended to be the system user because these questions are part
of a checklist that guides the user interview activity. As the requirements analyst gets
the answers from users, s/he registers in the checklist if the ubiquity characteristic is
desired or not.

Identifying ubiquity functional factors. Once the software ubiquity characteristics
have been defined, its functional requirements can be identified.

Therefore, a functional factors list associated to the defined ubicomp functional
characteristics (section 5) was used to create a complementary checklist. Again, the
checklist was defined in a way that it could be used for requirements gathering
activities. Thus, based on the identifying ubicomp characteristics step, the checklist is
dynamically organized with specific questions considering the selected ubiquity char-
acteristics. For each corresponding functional factor (section 3), the requirements
analyst identifies if it is or not necessary.

600 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

In the final step, for each selected factor, the requirements analyst is requested to
define the correspondent functional requirement. It is important to notice that a ubiq-
uity functional factor is not necessarily a functional requirement. However, it can
motivate the definition of a specific functional requirement for the software project.

7.2 Requirements Definition

The next step regards supporting the requirements analyst to detail each identified
functional requirement. For this, firstly, the analyst can group the functional require-
ments (because the relationship between the functional requirements and requirements
specification1 is M:N). Next, a set of information to be defined by the analyst is pre-
sented for each requirement that will be detailed.

This information can be different for each ubiquity characteristic and its associated
factors. For each ubiquity characteristic, a conceptual model based on their respective
functional factors was defined in a way that the models could capture their most relevant
concepts and relationships. Based on this information, it was possible to define what
must be captured to define requirements in accordance with the ubicomp characteristics.

7.3 Requirements Verification

This step is provided to assure the specified requirements quality. It is supported by
an additional checklist that guides the reviewer through the reading of the generated
requirements document and helps him to identify possible defects.

For the checklist construction, nine conceptual models (relating to the nine ubicomp
functional characteristics and their corresponding factors) were elaborated to capture
the most relevant concepts and relationships. These models, besides providing a better
way to understand the ubiquity characteristics, allow the definition of what needs to be
specified in the requirements to completely cover the chosen ubiquity characteristic.

For instance, from the conceptual model for context sensitivity ubicomp characteris-
tic it is possible to exemplify questions that will compose the verification checklist,
such as: (1) Do all information have a data source attached to it?; (2) Are the available
devices associated with the context in which they should work?; (3) Is the context
information of each available data source described?; (4) Are all information classified
in one of the four perspectives: physical, infra-structure, system or user information?

At the end of this step, a list of defects can be created and used to improve the re-
quirements specification quality.

8 Conclusions and Further Works

According to Weiser (1991), computers should be embedded into the environment in
such way that their use becomes natural and transparent. This prospective scenario
represents new research challenges in many areas like computer network, signal proc-
essing, optimization, and artificial intelligence. Particularly, from the point of view of
software engineering, these challenges can effectively be observed on the development
of different software technologies, such as methodologies, software processes, testing
approaches, and quality assurance techniques.

1 Requirements and use case descriptions.

 Supporting Requirements Definition and Quality Assurance 601

In this paper we intended to present a framework proposal to support the definition
and quality assurance activities regarding ubiquity requirements on ubiquitous soft-
ware projects. We believe it represents an important step towards the development of
increased quality ubiquitous software projects.

The context sensitivity characteristic was chosen as the first one to be included into
this framework. This decision was based on the fact that this characteristic seems to
be the more investigated by the research community [14].

Moreover, to facilitate the development of this framework, it was important to exe-
cute a comprehensive and systematic literature review. It results allowed us to obtain
a set of ubiquity definitions and characteristics reflecting the concepts of ubicomp
used currently by the scientific community. Thus, this paper also presents contribu-
tions as: (1) an updated definition for ubiquitous computing and ubicomp systems; (2)
a set of ubiquity characteristics to achieve ubicomp on software projects; (3) the iden-
tification of functional and restrictive factors for each ubiquity characteristic; (4) a
checklist to characterize ubiquitous software projects using the ubiquity characteris-
tics as a way to evaluate its ubiquity adherence level, and (5) identifying which ubiq-
uity characteristics have been currently considered on ubicomp software projects. All
these results were reached using the scientific method represented through systematic
literature reviews and knowledge evaluation using surveys.

Finally, it is important to reinforce that the creation of ubiquitous software applica-
tions is a hard task [13]. Based on that, as the identification of ubiquity characteristics
and factors can provide better understanding of ubicomp, this research can represent
an important step to deal with this kind of software and also creating subsidies to
support other project development phases, including planning and design.

This work is still in progress. The next steps include: (1) Replicating the survey
considering a broader audience, which will allow to observe the feasibility of the
initial results; (2) Evolving the definition of the framework to support activities of
definition and quality assurance regarding ubiquity requirements specification for
ubiquitous software projects; (3) Creating an initial version of an infrastructure to
support the framework activities mentioned above; (4) Experimentally evaluate the
infrastructure and improving it according to the experimental study results.

Acknowledgments. The authors would like to thank CAPES, CNPq, FAPERJ for the
financial support to this work and Dr. Karin Breitman for her valuable comments and
motivation. This work has been developed as part of the Experimental Software Engi-
neering and Science in Large Scale CNPq Project (475459/2007-5) and FAPERJ
research activities.

References

1. Ali, J.A., Won-Sik, Y., Jai-Hoon, K., We-Duke, C.: U-kitchen: application scenario. In:
Proc. of the Second IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems 2004, May 11-12, 2004, pp. 169–171 (2004)

2. Cheng, B.H.C., Berry, D.M., Zhang, J.: The four levels of requirements engineering for
and in dynamic adaptive systems. In: 11th Int. Work. on Requirements Engineering Foun-
dations for Software Quality. Co-located with CAiSE 2005, Porto, Portugal (June 2005)

602 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

3. Bossen, C., Jorgensen, J.B.: Context-descriptive prototypes and their application to medi-
cine administration. In: Proc. of the Conference on Designing interactive systems: proc-
esses, practices, methods, and techniques 2004, pp. 297–306 (2004)

4. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.-C.: Ambient Intelli-
gence: From Vision to Reality. IST Advisory Group Draft Rep., Eur. (2003)

5. Hatala, M., Wakkary, R., Kalantari, L.: Rules and Ontologies in Support of Real-time
Ubiquitous Application. Journal of Web Semantics, 5–22 (2005)

6. Joel, S., Arnott, J.L., Hine, N.A., Ingvarsson, H., Rentoul, R., Schofield, S.: A framework
for analyzing interactivity in a remote access field exploration system. SMC(3), 2669–
2674 (2005)

7. Kientz, J.A., Boring, S., Abowd, G.D., Hayes, G.R.: Abaris: Evaluating Automated Cap-
ture Applied to Structured Autism Interventions. In: Proc. of the 7th Int. Conference on
Ubiquitous Computing, Tokyo, Japan, September 11-14 (2005)

8. Jorgensen, J.B., Bossen, C.: Requirements Engineering for a Pervasive Health Case Sys-
tem. In: 11t IEEE Int. Requirements Engineering Conference 2003, pp. 55–64 (2003)

9. Lee, S.H., Chung, T.C.: System Architecture for Context-Aware Home Application. In:
Proceedings of the Second IEEE Workshop on Software Technologies for Future Embed-
ded and Ubiquitous Systems, May 11-12, 2004, pp. 149–153 (2004)

10. Goldsby, H., Cheng, B.H.C.: Goal-Oriented Modeling of Requirements Engineering for
Dynamically Adaptive Systems. In: 14t IEEE Int. Requirements Engineering Conf., Sep-
tember 11-15, 2006, pp. 345–346 (2006)

11. Niemela, E., Latvakoski, J.: Survey of requirements and solutions for ubiquitous software.
In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia,
pp. 71–78 (2004)

12. O’Neill, E., Kindberg, T., Schieck, A.F., gen, J.T., Penn, A., Fraser, D.S.: Instrumenting
the city: developing methods for observing and understanding the digital cityscape. In:
Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 315–332. Springer,
Heidelberg (2006)

13. Sakamura, K.: Challenges in the Age of Ubiquitous Computing: A Case Study of T-
Engine, An Open Development Platform for Embedded Systems. In: Proceedings of the
28th International Conference on Software Engineering, pp. 713–720 (2006)

14. Spínola, R.O., Silva, J.L.M., Travassos, G.H.: Checklist to Characterize Ubiquitous Soft-
ware Projects. In: XXI Simpósio Brasileiro de Engenharia de Software, João Pessoa. Anais
do XXI Simpósio Brasileiro de Engenharia de Software. Porto Alegre: Sociedade Bra-
sileira de Computação, 2007. vol. 1, pp. 39–55 (2007)

15. Tahti, M., Rauto, V., Arhippainen, L.: Utilizing context-awareness in office-type working
life. In: Proc. of the 3rd Int. Conf. on Mobile and Ubiquitous Multimedia 2004, College
Park, Maryland, pp. 79–84 (2004)

16. Vainio, A.M., Valtonen, M., Vanhala, J.: Learning and adaptive fuzzy control system for
smart home. In: Proc. of the AmI.d 2006, September 20-22, pp. 28–47 (2006)

17. Weiser, M.: The Computer for the 21st Century, pp. 94–104. Scientific American (1991)
18. Zhou, P., Nadeem, T., Kang, P., Borcea, C., Iftode, L.: EZCab: A Cab Booking Applica-

tion Using Short-Range Wireless Communication. In: Third IEEE International Confer-
ence on Pervasive Computing and Communications PerCom 2005, 8-12 March 2005, pp.
27–38 (2005)

19. Hong, D., Chiu, D.K.W., Shen, V.Y.: Requirements Elicitation for the Design of Context-
aware Applications in a Ubiquitous Environment. In: Proceedings of the 7th international
conference on Electronic Commerce, Xi’an, China, pp. 590–596 (2005)

 Supporting Requirements Definition and Quality Assurance 603

20. Xiang, J., Liu, L., Qiao, W., Yang, J.: SREM: A Service Requirements Elicitation Mecha-
nism based on Ontology. In: 31st Annual International Computer Software and Applica-
tions Conference, 2007. COMPSAC 2007, 24-27 July 2007, vol. 1, pp. 196–203 (2007)

21. Cherif, A.R., Hina, M.D., Tadj, C., Levy, N.: Analysis of a New Ubiquitous Multimodal
Multimedia Computing System. In: Proceedings of the 9th IEEE International Symposium
on Multimedia, pp. 161–168 (2007)

22. Spínola, R.O., Silva, J.L.M., Travassos, G.H.: Characterizing Ubicomp Software Projects
through a Checklist. In: WPUC 2007 - I Workshop on Pervasive and Ubiquitous Comput-
ing, 2007, Gramado; Proceedings of WPUC 2007, vol. 1, pp. 1–6. Sociedade Brasileira de
Computação, Porto Alegre (2007)

23. Abowd, G.D., Mynatt, E.D.: Charting Past, Present and Future Research in Ubiquitous
Computing. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1), 29–58
(2000); Special issue on human-computer interaction in the new millennium, Part 1

24. Biolchini, J., Mian, P.G., Natali, A.C.C., Travassos, G.H.: Systematic Review in Software
Engineering. Technical Report ES 679/05. COPPE/UFRJ (2005)

25. Pfleeger, S.: Software Engineering: Theory and Practice, 2nd edn. Prentice Hall, Engle-
wood Cliffs (2007)

26. Bo, C., Xiang-Wu, M., Jun-Liang, C.: An Adaptive User Requirements Elicitation Frame-
work. In: Proceedings of the 31st Annual International Computer Software and Applica-
tions Conference (COMPSAC 2007), vol. 2, pp. 501–502 (2007)

27. Chiu, D., Hong, D., Cheung, S.C., Kafeza, E.: Towards Ubiquitous Government Services
through Adaptations with Context and Views in a Three-Tier Architecture. In: Proc. of the
40th Hawaii Int. Conf. on System Sciences, January 2007, p. 94 (2007)

28. Cheng, J., Goto, Y., Koide, M., Nagahama, K., Someya, M., Utsumi, Y., Sshionoiri, A.:
ENQUETE-BAISE: A General-Purpose E-Questionnaire Server for Ubiquitous Question-
naire. In: IEEE Asia-Pacific Services Computing Conference, 11-14 December, pp. 187–
195 (2007)

29. Kindberg, T., Barton, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frig, M., Krish-
nan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.: People, places, things: Web
presence for the real world. In: Third IEEE Workshop on Mobile Computing Systems and
Applications, pp. 19–28 (2000)

30. Nawyn, J., Intille, S., Larson, K.: Embedding Behavior Modification Strategies into Con-
sumer Electronic Devices: A Case Study. In: Proc. of the 8th Int. Conference on Ubiqui-
tous Computing (2006)

	Supporting Requirements Definition and Quality Assurance in Ubiquitous Software Project
	Introduction
	Ubiquitous Computing Characteristics
	Functional and Restrictive Factors Related to Ubicomp Characteristics
	Characterizing Ubiquitous Software Projects
	Evaluating Ubicomp Concepts through a Survey
	Ubicomp and Requirements Engineering
	A Framework to Support Definition and Quality Assurance Activities Regarding Ubiquity Requirements in Software Projects
	Requirements Elicitation
	Requirements Definition
	Requirements Verification

	Conclusions and Further Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

